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Nonlinear Structural Analysis

Basics

Area of Application
The analysis option Nonlinear analysis enables the determination of the internal forces and deformations of beam and shell
structures  made  of  reinforced  concrete  and  steel  as  well  as  stress  states  of  solid  elements  considering  geometric  and
physical  nonlinearities.  A distinction can be made between calculations  with  material  characteristics  for  the  ultimate  limit
state or the serviceability limit state. Due to the considerable numerical complexity, it only makes sense to use this program
module for special problems.

Specifically, the following nonlinear effects can be taken into consideration:

• Equilibrium of the deformed system according to the second- or third order theory, if this has been activated for the
corresponding load case.

• Beams and area elements made of reinforced concrete according to DIN 1045, DIN 1045-1, OENORM B4700, SIA 262
and EN 1992-1-1.

• Beams and area elements made of steel with bilinear stress-strain curve under consideration of the Huber-von Mises
yield criterion and complete interaction with all internal forces.

• Beams and area elements with bilinear stress-strain curve respectively yield criterion according to Raghava or Rankine
and individually definable compressive and tensile strength.

• Solids with isotropic damage according to De Vree or Mazars as well as yield criteria according to Huber-Mises,
Raghava, Rankine, Mohr-Coulomb, Drucker-Prager or Lubliner with linear hardening.

• Solids with combined plasticity and damage.

• Compression-flexible beams.

• Beam and area element bedding with bilinear bedding curve perpendicular to and alongside the beam.

• Solid elements with bilinear bedding curve in the element coordinate system.

• Pressed steel layers in bond with concrete in beams can be considered with a bilinear stress-strain curve.

• Tendon groups in bond with concrete can be taken into account with a bilinear stress-strain curve.

• Prestressing without bond (only load) can also be simulated.

• Beams and area elements made of steel and reinforced concrete in case of fire according to EN 1992-1-2 and 
EN 1993-1-2 or beams made of timber in case of fire according to EN 1995-1-2 
(see chapter 'Structural analysis for fire scenarios').

Analysis Method
The analysis model used is based on the finite element method. To carry out a nonlinear system analysis, the standard beam
elements  are  replaced  internally  with  shear-flexible  nonlinear  beams  with  an  increased  displacement  function.  For  the
treatment  of  area  and  volume  structures  nonlinear  layer  elements  and  solid  elements  are  used.  In  contrast  to  the  linear
calculation and in order to account for the nonlinear or even discontinuous properties of the structure, a finer subdivision is
generally  necessary.  The  program assumes  that  the  actions  defined  in  the  load  cases  are  weighted  with  the  appropriate
partial safety factors.

Requirements

• The beams are assumed to be straight.

• The area elements are flat.

• Area and beam sections are constant for each element.

• The dimensions of the section are small compared with the other system dimensions.

• Shear deformations of beams are accounted for with a shear distortion that is constant across the section, meaning the
section remains plane after the deformation but is no longer perpendicular to the beam axis.

• The mathematical curvature is linearized (second-order theory).

• The load is slowly increased to its final value and does not undergo any deviation in direction as a result of the system
deformation.

Equilibrium iteration

To solve the nonlinear system of equations, both the incremental Newton-Raphson method and the arc length method can
be used. In both methods, the tangential stiffness matrix is computed in each iteration depending on the current internal
force  and  deformation  state.  Alternatively,  a  constant  stiffness  matrix  (linear  stiffness  method)  can  be  used.  Here,  the
stiffness matrix is  computed only  once at  the beginning of  the numerical  simulation and in the following assumed to  be
constant.
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The following calculation methods are available:

• Newton method:
The iteration is load-controlled until the residual (length of the error vector) falls below a required error limit. If the limit
is not reached within the maximum allowable iteration steps per load level, the iteration is aborted and the load factor 

(£ 1.0) is determined by interval nesting.

• Newton time steps method (NTS):
The solution method corresponds to the Newton method, except that for each time step the load present at that time
may be different according to the defined load-time function. Based on the solution of the last time step, a solution for
the next time step is determined. If it is not possible to fall below the error limit within the maximum iteration steps per
load level, the solution for an intermediate point in time is determined by interval nesting.

• Arc length method (ARC):
In this method, in each iteration cycle, starting from the last converged state, the solution of an extended nonlinear
system of equations along a circular arc with a given radius (arc length) is sought. As a result of the additional
constraint that has to be considered (equation of a generalized sphere), there is another unknown besides the
deformation vector - the load factor. Due to the combined load-displacement-controlled method, the behavior of
structures in the supercritical range (including snap through and snap back) can be analyzed. If, within the maximum
allowable iteration steps per arc length, the error is larger than the given tolerance, a solution for a smaller arc length is
determined. The end of the calculation is controlled either by the number of increments (arc lengths, iteration cycles),
the 1st bifurcation point, or a load factor to be reached. It is possible to increase the load within a load case only for
selected loads. For this purpose, an arbitrary load-time history must be assigned to these loads. All other loads are
constant. The shape of the load-time function is irrelevant.

The  following  figures  illustrate  the  different  iteration  progressions  using  the  example  of  a  beam  with  one  degree  of
freedom.

Newton method with tangential stiffness Newton method with constant stiffness

Newton method with time steps and tangential stiffness Arc length method with tangential stiffness

When performing a check on the entire system according to OENORM B4700 (Section 3.4.3.3), you need to keep in mind
that the decisive action combination may only amount to 80% of the reachable system limit load. To account for this, you
can, for example, introduce an additional load factor of 1.25.

For reinforced concrete components the existing reinforcement forms the basis of the calculation. If desired, an automatic
reinforcement increase can be carried out for the load bearing capacity check to achieve the required load level.
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Finite Beam Elements
A shear-flexible beam element with 4 nodes is used. Both inner nodes are hidden to the user. Each node has the degrees of

freedom ux, uy, uz, jx, jy and jz.

Beam element with node degrees of freedom

Because  independent  deformation  functions  are  used  for  the  displacement  and  rotation  of  shear-flexible  elements,  all
deformations of the given beam element are approximated by third-order polynomials.

This allows an equivalent representation of the strains and curvatures, which is especially advantageous for determining the
physical nonlinearities. All internal forces are described by second-order polynomials (quadratic parabolas).

In connection to shell elements equivalent shear fixed beam elements are used to provide compatibility.

For linear calculation and constant element load in the longitudinal or lateral direction the results are precise. Other loads,
such as point loads in the element or trapezoidal loads in the element, can only be approximated. The quality of the results
depends on the chosen structure discretization.

Kinematics

ux(x, y, z)  = ux(x) - y · jz(x) + z · jy(x)

uy(x, y, z)  = uy(x) - z · jx(x)

uz(x, y, z)  = uz(x) - y · jx(x)

Distortion-displacement relationships
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Tangential stiffness matrix
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If necessary, terms from the bedding of the elements can be added.

Section Analysis
In  general,  a  nonlinear  analysis  can only  be  performed for  polygon sections,  database  sections  and  steel  sections.  For  all
other  section  types  and  for  the  material  types  Beton  and  Timber  an  elastic  material  behavior  is  assumed.  In  order  to
determine the nonlinear stiffnesses and internal forces, you need to perform a numeric integration of the stresses and their
derivatives across the section area. The procedure differs depending on the material.

Reinforced Concrete Beams
Based on the stress-strain curves shown further below, the resulting internal forces Nx,  My and Mz at the section can be

determined for a known strain state by integrating the normal stresses. For determining the strain and stress states at the
section the following assumptions are made:

• The sections remain flat at every point in time during the deformation, even when the section is cracked as a result of
exceeding the concrete tensile strength.

• The concrete and reinforcement are perfectly bonded.

• The tensile strength of the concrete is usually ignored, but it can be taken into account if desired.

• The tensile section of the stress-strain curves can be described using one of the two following curves:

With softening Bilinear

ect Strain when reaching the concrete tensile strength

ectu Strain after exceeding the specific fracture energy Gf
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• The tension stiffening effect of the concrete is accounted for by the residual tensile stress s = c·fctm or c·ßbz. The

constant c can be set by the user (default: 0.1).

a) Reinforced concrete section with stress-
triggering strains

b) Concrete and steel stresses

c) Resultant internal forces

Depending on the chosen material type, the following stress-strain curves are applied. The tensile section of the concrete is
only activated as an option.
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Stress-Strain-Curves for the Ultimate Limit State Check

The following material partial safety factors are implemented. For Concretes according to EN 1992-1-1 or OENORM B 4700
the user-defined material safety factors for the permanent and temporary design situation or fundamental combination are
used.

The stress-strain curves of prestressing steel have a rising branch with Ep and a horizontal upper branch at fpd. Depending

on the concrete, the following strengths are assumed for fpd.

• Concrete DIN 1045:1988 :  fpd = ßs

• Concrete DIN EN 1992-1-1, DIN 1045-1 :  fpd = 1,1·fp0,1k/gR mit gR = 1.3

• Concrete EN 1992-1-1, ÖNORM B 4700, SIA 262 :  fpd = fp0,1k/gs mit gs = 1.15

Concrete acc. to DIN 1045:1988, Figure 11

 ßR acc. to Table 12

sc = -ßR·(eb - 1/4·eb²) for 0 ³ eb ³ -2 ‰

Reinforcing steel acc. to DIN 1045:1988, Figure 12
Es = 210000 MN/m² acc. to Figure 12

Stress-strain curves according to DIN 1045

Concrete acc. to DIN 1045-1, 9.1.5

sc acc. to Equation (62) or Figure 22 for 0 ³ ec ³ ec1

with fcR/gR instead of fc ;  gR = 1.3 

Ec0m or Elc0m instead of Ec0

 fcR acc. to Eq. (23) or Eq. (24)

Normal
concrete:

 a = 0.85

Lightweight
concrete:  flck instead of fck and a = 0.75

Reinforcing steel acc. to DIN 1045-1, 9.2.3 Figure 26

 fyR = 1,1·fyk ;  gR = 1.3 acc. to 8.5.1 (4)

k = 1.05 ;  euk = 2.5% acc. to Table 11, Column 1 or 2

Es = 200000 MN/m² acc. to 9.2.4 (4)

Stress-strain curves according to DIN 1045-1
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Concrete acc. to EN 1992-1-1, 3.1.5

sc acc. to Equation (3.14) for 0 ³ ec ³ ec1 or elc1

with fcd or flcd instead of fcm and acc. Eq. (5.20) 

Ecd = Ecm/gc instead  of Ecm 

with gcE = 1.2 and Ecm as specified

Normal
concrete:  fcd = acc·fck/gc (Eq. 3.15) with acc = 1.0

Lightweight
concrete:

 flcd = alcc·flck/gc (Eq. 11.3.15) 

with alcc = 0.85

gc as specified (Table 2.1N, Row 1, gc = 1.5)

Reinforcing steel acc. to EN 1992-1-1, 3.2.7 Figure 3.8

k = 1.05 ;  euk = 2.5% acc. to Table C.1, Column A

Es = 200000 MN/m² acc. to 3.2.7 (4)

gs = 1.15 acc. to Table 2.1N, Row 1

Stress-strain curves according to EN 1992-1-1

Concrete acc. to DIN EN 1992-1-1, 3.1.5

sc acc. to Equation (3.14) for 0 ³ ec ³ ec1 or elc1

with fcR/gR instead of fcm and Ecm/gR instead  of Ecm

with gR = 1.3 and Ecm as specified

 fcR acc. to Eq. (NA.5.12.7)

Normal
concrete:

fcR = 0.85·acc·fck with acc = 0.85

Lightweight
concrete:  fcR = 0.85·alcc·flck with alcc = 0.75

Reinforcing steel acc. to DIN EN 1992-1-1, 3.2.7 Figure 3.8

 fyR = 1.1·fyk acc. to Eq. (NA.5.12.2); gR = 1.3

k = 1.05 ;  euk = 2.5% acc. to Eq. (NA.5.12.4)

Es = 200000 MN/m² acc. to 3.2.7 (4)

Stress-strain curves according to DIN EN 1992-1-1

Concrete acc. to OENORM B 4700, 3.4.1.1 Figure 7
with fcm = fck + 7.5 (N/mm²) acc. to Equation (10c) and

 fck = 0.75·fcwk acc. to 3.4.1.1 (2)

gc as specified (Table 1, Row 1, gc = 1.5)

Reinforcing steel acc. to OENORM B 4700, 3.4.1.2 Figure 9
with fym = fyk + 10 (N/mm²) acc. to Equation (10d)

Es = 200000 MN/m² acc. to Figure 9

gs = 1.15 acc. to Table 1, Row 1

Stress-strain curves according to OENORM B 4700



7

Basics

© InfoGraph GmbH, February 2024

Concrete acc. to SIA 262, 4.2.1.6 and Figure 12

sc acc. to Equation (28) for 0 ³ ec ³ -2 ‰ with

 fcd acc. to Eq. (2) and Eq. (26); gc = 1.5 acc. to 2.3.2.6

Ecd = Ecm / gcE acc. to Eq. (33)

Ecm acc. to Eq. (10) and Eq. (11)

gcE = 1.2 acc. to 4.2.1.17

Reinforcing steel acc. to SIA 262, 4.2.2.2, Figure 16

with fsd = fsk/gs acc. to Eq. (4); gs = 1.15 acc. to 2.3.2.6

ks = 1.05 and euk = 2 % acc. to Table 9, Column A

Es = 205000 MN/m² acc. to Figure 16

Stress-strain curves according to SIA 262

Stress-Strain-Curves for the Serviceability Check

The serviceability check is based on the average strengths of the materials. The partial safety factors are assumed to be 1.0.
The stress-strain curves of prestressing steel have a rising branch with Ep and a horizontal upper branch at fp0,1k or ßs.

Concrete with linear stiffness in the compression zone
without failure limit

Reinforcing steel acc. to DIN 1045:1988, Figure 12
Es = 210000 MN/m² acc. to 6.2.1

Stress-strain curves according to DIN 1045

Concrete acc. to DIN 1045-1, 9.1.5

sc acc. to Equation (62) or Figure 22 for 0 ³ ec ³ ec1

with fcm = fck + 8 (N/mm²) or flcm = flck + 8 (N/mm²) 

instead of fc and Ec0m or Elc0m instead of Ec0

Reinforcing steel acc. to DIN 1045-1, 9.2.3 Figure 26

k = 1.05 ;  euk = 2.5% acc. to Table 11, Column 1 or 2

Es = 200.000 MN/m² acc. to 9.2.4 (4)

Stress-strain curves according to DIN 1045-1
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Concrete acc. to EN 1992-1-1, 3.1.5

sc acc. to Equation (3.14) for 0 ³ ec ³ ec1 or elc1

with fcm = fck + 8 (N/mm²) acc. to Table 3.1 

or flcm acc. to Table 11.3.1

and Ecm or Elcm as specified

Reinforcing steel acc. to EN 1992-1-1, 3.2.7 Figure 3.8

k = 1.05 ;  euk = 2.5% acc. to Table C.1, Column A

Es = 200000 MN/m² acc. to 3.2.7 (4)

Stress-strain curves according to EN 1992-1-1

Concrete acc. to DIN EN 1992-1-1, 3.1.5

sc acc. to Equation (3.14) for 0 ³ ec ³ ec1 or elc1

with fcm = fck + 8 (N/mm²) acc. to Table 3.1 

or flcm acc. to Table 11.3.1

and Ecm or Elcm as specified

Reinforcing steel acc. to DIN EN 1992-1-1, 3.2.7 Figure 3.8

k = 1.05 ; euk = 2.5%

Es = 200000 MN/m²

Stress-strain curves according to DIN EN 1992-1-1

Concrete acc. to OENORM B 4700, 3.4.1.1 Figure 7
with fcm = fck + 7.5 (N/mm²) acc. to Equation (10c) and

 fck = 0.75·fcwk acc. to 3.4.1.1 (2)

Reinforcing steel acc. to OENORM B 4700, 3.4.1.2 Figure 9
with fym = fyk + 10 (N/mm²) acc. to Equation (10d)

Es = 200000 MN/m² acc. to Figure 9

Stress-strain curves according to OENORM B 4700
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Concrete acc. to SIA 262, 4.2.1.6 and Figure 12

sc acc. to Equation (28) for 0 ³ ec ³ -2 ‰ with

 fcm = fck + 8 (N/mm²) acc. to Eq. (6) instead of  fcd

Ecm acc. to Eq. (10) and Eq. (11) instead of Ecd

Reinforcing steel acc. to SIA 262, 4.2.2.2, Figure 16
with fsk instead of fsd

ks = 1.05 and euk = 2 % acc. to Table 9, Column A

Es = 205000 MN/m² acc. to Figure 16

Stress-strain curves according to SIA 262

Torsional Stiffness

When  calculating  the  torsional  stiffness  of  the  section,  it  is  assumed  that  it  decreases  at  the  same  rate  as  the  bending
stiffness.
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The opposite  case,  meaning  a  reduction  of  the  stiffnesses  as  a  result  of  torsional  load,  cannot  be  analyzed.  The  physical
nonlinear analysis of a purely torsional load is also not possible for reinforced concrete.

Check of the Limit Strains (Ultimat Limit State Check)
After completion of the equilibrium iteration the permissible limit strains for concrete and reinforcing steel  are checked in
the case of structures consisting only of beam elements, if the Newton analysis method is used. If the permissible values are
exceeded the reinforcement will be increased or the load-bearing capacity will be reduced.

Automatic Reinforcement Increase (Ultimate Limit State Check)

If requested an automatic increase of reinforcement can be made for structures consisting only of beam elements with the
Newton  analysis  method  to  reach  the  full  load-bearing  capacity.  Initially  based  on  the  desired  start  reinforcement  the
reachable load level is determined. If the reached load-bearing capacity considering the limit strains is lower then 100%, the
reinforcement will be increased and the iteration starts again. If no load-bearing capacity exists because of insufficient start
reinforcement a base reinforcement can be specified within the reinforcing steel definition and the design can be performed
again.
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Concrete Creep

The consideration of concrete creep in nonlinear analysis is realized by modifying the underlying stress-strain curves. These

are  scaled  in  strain-direction  with  the  factor  (1+j).  Also  the  corresponding  limit  strains  are  multiplied  by  (1+j).  The
following figure shows the qualitative approach.

The described procedure postulates that the creep-generating stresses remain constant during the entire creep-period. Due
to  stress  redistributions,  for  example  to  the  reinforcement,  this  can  not  be  guaranteed.  Therefore  an  insignificant
overestimation of the creep-deformations can occur.

Stress relaxation during a constant strain state can also be modelled by the described procedure. It leads, however,  to an
overestimation of the remaining stresses due to the non-linear stress-strain curves.

The nonlinear concrete creep can be activated in the 'Load group' dialog.

This analysis approach applies analogous for area elements.

The plausibility of the achievable calculation results as well as the mode of action of different approaches for the concrete
tensile strength and the tension stiffening are demonstrated by some examples in the 'Examples' section.

Steel Beams
The  section  geometry  is  determined  by  the  polygon  boundary.  In  order  to  perform  the  section  analysis,  the  program
internally generates a mesh. The implemented algorithm delivers all  section properties,  stresses and internal forces on the
basis of the quasi-harmonic differential equation and others.

Steel cross-section with internal mesh 

The shear load is described by the following boundary value problem:
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The differential equation holds equally for Qy, Qz and Mx. Depending on the load, the boundary condition delivers different

boundary  values  of  the  solution  function  j.  The  solution  is  arrived  at  by  integral  representation  of  the  boundary  value
problem and discretization through finite differential  equation elements.  The internal  forces  are  determined  by  numerical
integration of the stresses across the section under consideration of the Huber-von Mises yield criterion. The interaction of
all internal forces can be considered.

At the ultimate limit state, the material safety factor gM is taken into account as follows:

• Construction steel according to DIN 18800 and the general material type Stahl:

The factor gM of the fundamental combination according to DIN 18800 is decisive.

• Construction steel according to EN 10025-2:

In accordance with EN 1993-1-1, Chapter 6.1 (1), gM is assumed to be gM0 = 1.0.

The serviceability check is generally calculated with a material safety factor of gM = 1.0.
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On the basis of DIN 18800, the interaction between normal and shear stresses is considered only when one of the following
three conditions is met:

Qy ³ 0.25·Qpl,y,d

Qz ³ 0.33·Qpl,z,d

Mx ³ 0.20·Mpl,x,d

Limiting  the  bending  moments  Mpl,y,d  and  Mpl,z,d  according  to  DIN 18800  to  1.25  times  the  corresponding  elastic  limit

moment does not occur.

Stability failure due to cross-section buckling or lateral torsional buckling is not taken into account.

Beams of Free Material
For  polygon  sections  of  the  general  material  type  Frei,  the  following  bilinear  stress-strain  curve  with  user-defined  tensile
strength (fy,tension ) and compressive strength (fy,compression ) is used.

Stress-strain curve for the material type Frei

Due to the differing strengths in the compressive and tensile section, the Huber-von Mises yield criterion is not used here.
The interaction of normal and shear stresses is also not accounted for.

Area Elements
So-called  layer  elements  are  used  to  enable  the  integration  of  nonlinear  stresses  across  the  area  section.  This  is  done  by
determining the stresses in each layer according to the plain stress theory, two-dimensional stress state, under consideration
of the physical nonlinearities. The integration of the stresses to internal forces is carried out with the help of the trapezoidal
rule.
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Reinforced Concrete Area Elements
The  biaxial  concrete  behavior  is  realized  with  the  help  of  the  concept  of  equivalent  one-axial  strains  (Finite  Elemente  im
Stahlbetonbau  (Finite  Elements  in  Reinforced  Concrete  Construction),  Stempniewski  and  Eibl,  Betonkalender  1993).  The
existing strain state is  first  transformed into the principal  direction in each corresponding layer  and then reformed to  the
equivalent relationship of the form
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The shear modulus G  is  considered to be direction independent in this approach.  The poisson's  ratio  n  is  assumed to  be
constant.

The required tangential  stiffnesses E1  and E2   and equivalent biaxial  concrete compressive stresses sc,i  are iterated using

the Saenz curve
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 with i = 1, 2 (principal directions)

under consideration of the biaxial stiffnesses according to Kupfer/Hilsdorf/Rüsch.

Only when checking the serviceability according to DIN 1045 it is assumed that the compressive area exhibits a linear elastic
material behavior.

Parameters for the stress-strain relationship used are:

• Initial stiffness Ec0 of the one-axial stress-strain curve of the selected concrete.

• Equivalent biaxial concrete strains ec,i

• Factor of the biaxial failure curve ki according to Kupfer/Hilsdorf/Rüsch depending on sc,1 / sc,2.

• Secant stiffness EcS,i = fcB,i / ecB,i when the biaxial concrete compressive strength fcB,i is reached.

• Biaxial concrete compressive strength fcB,i = ki · fc
• Concrete compressive strength fc of the one-axial stress-strain curve of the selected concrete. The values described in

the section Reinforced concrete beams are used.

• Compression ecB,i when fcB,i is reached. The value ecB,i is derived from the function parameters ki and ec1 according

to Darwin and Pecknold.

• Compression ec1 when the strength fc of the one-axial stress-strain curve of the selected concrete is reached.

Biaxial failure curve according to Kupfer/Hilsdorf/Rüsch Standardized equivalent one-axial stress-strain curve for concrete
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Stress-strain curve for the serviceability check according to DIN 1045

The consideration of the concrete creep occurs analog to the procedure for beams through modification of the underlying
stress-strain curves and can be activated in the 'Load group' dialog.

Interaction with the shear  stresses from the lateral  forces is  not  considered here.  During  the  specification  of  the
crack  direction  the  so-called  'rotating  crack  model'  is  assumed,  meaning  that  the  crack  direction  can  change  during  the
nonlinear iteration as a function of the strain state. Conversely, a fixed crack direction after the initial crack formation can
lead to an overestimation of the load-bearing capacity.

The  Finite  Element  module  currently  does  not  check  the  limit  strain  nor  does  it  automatically  increase
reinforcement to improve the load-bearing capacity due to the significant numerical complexity.

For clarification of the implemented stress-strain relationships for concrete, the curves measured in the biaxial test according
to Kupfer/Hilsdorf/Rüsch are compared with those calculated using the approach described above.

Biaxial test according to Kupfer/Hilsdorf/Rüsch

Calculation results for C25/30; fcm = 25 + 8 = 33 MN/m²
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The existing reinforcing steel is modeled as a 'blurred' orthogonal reinforcement mesh. The corresponding strain state is
transformed into the reinforcement directions (p, q) of  the respective reinforcing steel  layer.  The stress-strain curve of the
selected reinforced concrete standard is used to determine the stress.

Area Elements of Steel and Free Material
For area elements made of steel the Huber v.Mises yield criterion is used. The material safety factor specified in the section
Steel beams apply accordingly. For area elements of the material type Frei, the Raghava yield criterion, as described below,
or the Rankine yield criterion can be chosen.

F = J2 - 1/3 · fc · ft + ( fc - ft ) · sm = 0

with

sm = 1/3 ( sx + sy + sz )

J2 = 1/2 ( s²x + s²y + s²z ) + t²xy + t²yz + t²zx

sx = sx - sm

sy = sy - sm

sz = sz - sm

Starting  from the  strain  state,  a  layer  is  iterated  on  the  yield  surface  with  the  help  of  a  'backward  Euler  return'  that,  in
conjunction with the Newton-Raphson method, ensures quadratic convergence. (Non-linear Finite Element Analysis of Solids
and Structures, M.A. Crisfield, Publisher John Wiley & Sons).

The yield surface mentioned above is illustrated below for the 2D stress state, as used for layer elements, for the principal

stresses s1 and s2 as well as for the components sx, sy and txy.

In this example fc = 20 MN/m² and ft = 2 MN/m².
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Solid Elements
A  distinction  is  made  between  solid  elements  made  of  steel,  a  standardized  concrete  type  and  solid  elements  with  the
material type Frei.

For solid elements made of the first two material types, the yield criterion according to Raghava (ideal plastic) is used. For
the standardized concrete types, the compressive strength fc is set to fck in the serviceability and to fcd in the ultimate limit

state. Softening of the material in tension is not currently supported for these material types.

If,  on  the  other  hand,  a  structure  is  discretized  with  solid  elements  of  the  material  type  Frei,  three  different  model
approaches  are  available  to  represent  the  nonlinear  material  behavior  (i.a.  with  hardening  and  softening  in  tension  and
compression). Depending on the problem to be analyzed, the numerical calculation can be carried out either by using pure
damage and plasticity models or a combination of plasticity and damage. Damage surfaces, yield criteria and all parameters
associated with the respective model are to be selected or adapted in the dialog for the material  properties.  An isotropic
material behavior is assumed for all models.

In the following, the model approaches (damage, plasticity and combined model) are briefly described. Detailed derivations
etc. can be found in a large number of publications

[e.g. Kachanov (1958, 1986), Chaboche (1981), Lemaitre & Chaboche (1990), Chen & Han (1988)].

Damage
The constitutive relations of a isotropic damage model are as follows:

 ,)1(:)1( s×-=e×-=s DCD  (C: elasticity tensor, e: strain tensor) (V1)

where s are denoted as effective and s as nominal stresses. The degradation of the material is determined using the scalar

damage  parameter  D(h),  which  is  calculated  here  as  a  function  of  the  equivalent  strain  h.  In  InfoCAD  only  exponential
functions are used to represent the loss of stiffness.  All  functions have in common that  the damage parameter  takes  the

value  zero  (D = 0  ®  s = C : e  )  for  undamaged material  and  the  value  one  (  D = 1  ®  s = 0  )  for  completely  damaged
material.

InfoCAD  provides  two damage models,  the  De Vree  et al. (1995)  model  and  the  Mazars et al.  (2015)  model.  The  models
differ both in the shape of the damage surface and in the equation used to calculate the damage parameter. As a result,
materials with both identical (De Vree) and different (Mazars) tension-compression behavior can be modeled. A method for
minimizing mesh dependency is not currently considered in either model.

De Vree
In the De Vree model, elastic material behavior is assumed until the maximum tensile ( ft ) and compressive ( fc ) stresses are

reached. The stress-strain curve after reaching the respective yield stress (softening) is also qualitatively identical. In InfoCAD,
a combination of equivalent strain according to  De Vree et al. (1995)
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I1 = e1+ e2+ e3   (1. invariant of the strain tensor)

J2 = [(e1- e2)² + (e2- e3)² + (e3- e1)²]/6   (2. deviatoric invariant)

(V2)

and exponential damage function according to Peerlings (1999)
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is  used,  where  D(h) = 0  if  h £ h0.  In  the  latter  formulation,  the  residual  tensile  or  compressive  strength  is  controlled  by

parameter A (sres = (1 - A)·sc,t ) and the damage evolution (slow or fast increase of damage) by parameter B, see Figure 1.
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Figure 1: Uniaxial stress-strain diagram (de Vree / Peerlings)

With  increasing  stiffness  degradation,  the  damage  asymptotically  approaches  the  value 1.  In  addition  to  the  three-

dimensional  view,  Figure 2  also  shows  the  damage  surface  for  the  plane  stress  state  (s3=0).  Based  on  this  (cf.  with

Kupfer et al. (1969)) and the uniaxial stress-strain relationship,  it becomes clear that the compressive behavior of concrete
cannot be adequately represented with this damage model.
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Figure 2: Damage (de Vree) in the principal stress space, fc = 20 MPa, ft = 2 MPa

On the one hand, the nonlinear relationship between stresses and strains  is  not reproduced realistically,  this  applies  both
before  and  after  reaching  the  compressive  strength  fc,  and  on  the  other  hand,  the  compressive-compressive  failure  is

significantly overestimated. However, problems with dominant tensile failure can be predicted with sufficient accuracy using
this  model.  The  counterpart  to  De Vree's  damage  surface  is  the  yield  surface  according  to  Raghava (1973)  (or  Mises-

Schleicher (1926)) in the case of plastic material behavior, see Figure 9. In analogy to the yield surface (Raghava ® Mises), in

the  plane  stress  state  (s3=0)  the  damage  surface  degenerates  to  an  ellipse  symmetrical  to  the  stress  origin  for  identical

values of tensile and compressive strength ( ft = fc ® K = 1, see Eq. V2).

Mazars' µ-Model
The second isotropic damage model implemented in InfoCAD is  based on the publications of  Mazars et al.  (2015,  2017).

The equivalent strains are determined separately for tension (ht) and compression (hc):
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The triaxial factor r (Lubliner et al. 1989) is subsequently used to calculate the equivalent total strain corresponding to the
respective stress state:

 ,)1( ct h×-+h×=h rr  with: 
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Depending on the triaxial  factor r  and the respective parameters for generating the damage function in tension (  At,  Bt  )

and compression ( Ac, Bc ), a damage related to the three-dimensional stress state is formulated. With the two parameters

A and B
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the damage parameter finally yields to:
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Also here applies: D(h) = 0 if h £ h0. The shear parameter k is set to 0.7 according to the recommendation in Mazars et al.

 (2017). For the two limiting cases r = 1 (pure tension) and r = 0 (pure compression), the result is: A = At and B = Bt or A = 

Ac  and B = Bc,  see Eqs. V6 and V7. In contrast to  the tensile  range,  where damage to  the material  only  starts  when the

maximum tensile  stress  ft  is  reached,  in  the  compressive  range  a  loss  of  stiffness  already  occurs  before  the  compressive

strength fc is reached.

D = 1

s

e

s / e and D / e

Tension

Damage D

Figure 3: Uniaxial stress-strain and damage-strain diagram (Mazars' µ-Model)

This  is  evident  from  both  the  damage  surfaces  (Figure 4)  and  the  nonlinear  stress-strain  relationships  even  before  the
maximum value is reached (see Figure 3). Thus, in contrast to the De Vree model, the compressive behavior of concrete can

also be represented satisfactorily. The factor h0 / h, which was not considered by Mazars et al. (2015) in the third term of

the damage function, is decisive for this, see Eqs. V3 and Gl. V8.
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Figure 4: Damage surface (Mazars' m-Model) in the principal stress space, fc = 20 MPa, ft = 2 MPa

The respective threshold values hT0 (uniaxial tension) and hC0 (uniaxial compression) are defined as follows:

 

E

f t
T0 =h  and 

 
T0C0

3

10
h×=h (V9)

The  compressive  threshold  value  is  10/3  times  the  tensile  threshold  value  (Gafoor & Dinkler  2020).  Analogous  to  the
exponential  damage  function  according  to  Peerlings  (Gl. V3),  the  residual  strength  is  controlled  with  the  parameters  At

(tension)  and  Ac  (compression)  and  the  stiffness  degradation  with  the  parameters  Bt  (tension)  and  Bc  (compression).

However, due to the changed function compared to Peerlings as well as the definition of the compression threshold hC0,
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there are some dependencies that have to be considered when using the m-model. First, since the compression range of the
stress-strain relation is determined by the tensile strength ft, the residual tensile strength is also defined by it:

 
tt
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t )1( fA ×-=s  or 
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3

10
)1( fA ××-=s (V10)

Secondly, the parameters A (At, Ac) and B (Bt, Bc) not only influence the residual load-carrying capacity and induce a fast or

slow increase of the damage (see Figure 1), but also (with the exception of At) directly influence the maximum value of the

compressive  or  tensile  stress  (fc  or  ft).  This  can  be  seen  from  the  uniaxial  relationships  shown  in  Figure 5  (At  and  Ac

constant) and Figure 6 (Bt and Bc constant).
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Figure 5: Uniaxial stress-strain diagram (Mazars' m-Model). Influence of the parameter B.

In order to make both the input of the stress-strain relationship as flexible as possible and to guarantee compliance with the
tensile and compressive strength selected in the dialog (without parameter study), two alternatives are available in InfoCAD.
One with and one without entering the parameters Bt and Bc. With the input of both parameters, the selected tensile and

compressive strength does not correspond to the maximum values of the stress-strain relationship (see 2 and 3 in Figures 5
and 6). Without input, on the other hand, i.e. if the check mark is removed from 'Enter B', the strengths previously defined
in the dialog are automatically obtained (see 1 in Figures 5 and 6).
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Figure 6: Uniaxial stress-strain diagram (Mazars' m-Model). Influence of the parameter A.

In  the  standard  case,  the  limit  strain  e1  results  from  the  parameters  selected  in  the  dialog  for  the  material  properties.

However,  if  the  compressive  strength  fc  is  to  correspond  to  a  certain  limiting  strain  e1,  it  is  necessary  to  adjust  the

compressive parameters Ac  and Bc.  For this purpose,  Bc  (Bc = 1 / e1)  can first  be determined and then the parameter  Ac

according to Equation V11:

 )/)1exp(/()/( cC0cC0cC0 BBEfAc -h×-h-h= (V11)
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Examples

To validate the m-model implemented in InfoCAD and verify the numerically predicted stiffness degradation due to uniaxial
and biaxial loading, a comparison is made with the results of Mazars et al. (2015) as well as a comparison with experimental
results  (Kupfer et al. 1969).  Figure 8  shows  the  stress-strain  relationship  resulting  from  uniaxial  load.  InfoCAD  gives  the
same  results  as  published  by  Mazars et al.  For  completeness,  it  is  noted  that  the  damage  thresholds  are  determined

internally here (Eq. V9) and are not explicitly given as model parameters ( hT0 and hC0 ).
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Figure 7: Uniaxial stress-strain relation (numerical)

The damage surface visualized in Figure 4 already shows that the biaxial failure curve of concrete (Kupfer et al.) can also be

reproduced  well  with  the  m-model.  In  order  to  additionally  evaluate  the  quality  of  the  numerically  predicted  stiffness

degradation for a biaxial loading (plane stress state s3=0), corresponding finite element analyses were carried out and their

results plotted together with the experimental results of Kupfer et al. in Figure 8. While all compressive components of the
principal  strains  agree  sufficiently  accurately  with  the  measured  values,  the  tensile  components  in  the  region  of  the
maximum values deviate from the recorded values. This is due to the fact that with an isotropic damage formulation, the

poisson’s  ratio  n  remains  constant  (Mazars et al.).  In  addition,  this  model  slightly  overestimates  the  biaxial  compressive
strength. Regarding the partial discrepancy between numerical and experimental results, it should be mentioned here again
that the stress-strain relationship, as described in the previous sections, can be adapted to the existing material behavior at
any time by changing the four damage parameters (At, Bt, Ac and Bc) as well as the tensile strength.
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Figure 8: Two-axial stress-strain relationships. Comparison of numerical ( -- InfoCAD: Mazars’ m-model) 

and experimental ( n Kupfer et al.) results.

Parameters: ft = 3.2 MPa, E = 30 GPa, n = 0.2, At = 1, Ac = 1.25, Bt = 10000, Bc = 459
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Plasticity

The yield criteria available in InfoCAD are explained below:

• Raghava 

• Huber-v.Mises 

• Rankine 

• Mohr-Coulomb 

• Drucker-Prager 

• Lubliner 

The  Rankine,  Mohr-Coulomb,  Drucker-Prager  and  Lubliner  yield  criteria  are  only  available  for  solid  elements  with  the
material type Frei. The desired plasticity model can be selected in the material properties dialog.

It  should  be  noted  that  the  following  equations  do  not  take  into  account  isotropic  hardening.  Initially,  an  ideal  plastic
material behavior is assumed. Explanations of the linear hardening considered in the FE program are given at the end of this
section.

Due to the split of the strain tensor ( e ) into an elastic ( e el ) and a plastic ( e pl ) part, the constitutive relations are defined
as follows:

s = C : e el = C : ( e - e pl ),  (C: elasticity tensor) (V12)

Where the stresses here are also named effective stresses.

Raghava
For  solid  elements  made  of  steel  and  standardized  concrete,  only  the  yield  criterion  according  to  Raghava et al. (1973),
Schleicher (1926) is used:

F(s) = J2 + a · I1 - b = 0,
with a = ( fc - ft )/3 , b = ( fc · ft )/3,

I1= s1+ s2+ s3 and J2= [(s1- s2)²+(s2- s3)²+(s3- s1)²]/6
(V13)

Figure 9 shows the yield surface in the principal stress space. To illustrate the difference to the biaxial failure curve according

to  Kupfer et al. (1969),  the  yield  surface  in  the  plane  stress  state  (s3=0)  is  shown  in  addition  to  the  three-dimensional

surface.
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Figure 9: Yield surface according to Raghava in the principal stress space, fck = 20 MPa, fctm = 2 MPa

Analogous  to  the  De Vree  damage  model  (Figure 2),  the  compression-compression  zone  for  concrete  is  significantly
overestimated.
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Huber-v.Mises

If tensile and compressive strength are identical ( fc = ft = sy), the yield criterion of Raghava et al. (1973) is equivalent to the

Huber-v. Mises yield criterion:

F(s) = J2 - sy² / 3 = 0 (V14)

The  representation  of  the  yield  surface  in  the  principal  stress  space  results  in  the  typical  Huber-v.Mises  cylinder,  whose
center line coincides with the hydrostatic axis, see Figure 10. Due to the fact that here hydrostatic stresses (in contrast to the
modified approach of Raghava, Eq. V13) have no influence on the yield behavior, this plasticity model is only suitable for a

few materials, such as steel. This is also evident from the symmetrical yield surface in the plane stress state (s3=0).
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Figure 10: Yield surface according to Huber-v.Mises in the principal stress space, fc = 235 MPa, ft = 235 MPa

Rankine
A plasticity criterion that can be used in addition to the two previously mentioned for solid elements of the material  type
Frei is based on the work of Rankine (1858). It is mainly suitable for brittle materials, since only one of the three principal

stresses must exceed the elastic limit ( s1,2,3 > fc,t ) for plastic yield to occur. The remaining two principal stresses have no

effect on material failure. The yield surface composed of two parts is shown in Figure 11.
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Figure 11: Yield surface according to Rankine in the principal stress space, fc = 20 MPa, ft = 2 MPa

With  the  first  invariant  of  the  stress  tensor  I1,  the  second  deviatoric  invariant  J2,  the  Lode  angle  Q  and  the  respective

strengths (t: tension, c: compression), the following form of the yield criterion is obtained:

 03cos32)( ct ,12ct , =×-+Q×××=s fIJF (V15)
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Mohr-Coulomb
A  frequently  used  plasticity  model  for  estimating  the  load-bearing  behavior  of  soils  (i.a.  bearing  capacity  failure  of
foundation and embankment failure) was developed by Coulomb in the 18th century and generalized by Mohr towards the
end of the 19th century: the Mohr-Coulomb model. Here, a linear relationship is assumed between the shear strength of a
material and the normal stresses occurring in the shear joint, with the resistance that occurs during sliding within the shear
joint being defined by the angle of friction

j. With additional consideration of the cohesion c, i.e. the adhesive strength of individual soil particles, the following form
of the yield condition is obtained:

F(s) = t + s · tan( j ) - c = 0,

With  the  use  of  Mohr's  stress  circle,  the  above  equation  can  also  be  formulated  as  a  function  of  the  maximum  and
minimum principal stress:

F(s) = ( smax - smin ) + ( smax + smin )·sin( j ) - 2·c ·cos( j ) = 0 (V16)

The Mohr-Coulomb yield surface is described by a total of six planar surfaces, which form an irregular six-sided pyramid in
the  three-dimensional  stress  space,  see  Figure 12.  Its  shape  can  also  be  clearly  understood  by  the  showb  sections
perpendicular to the hydrostatic axis (deviator plane). In addition, the influence of material parameters such as friction angle

 j and cohesion c becomes obvious when comparing yield surfaces generated with both concrete (Figure 12, left) and soil
(right) parameters.
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Figure 12: Yield surface according to Mohr-Coulomb in the principal stress space

In order to prevent an overestimation of the volume increase during plastic yielding (dilatancy), the general case of the non-
associative  yielding  rule  has  been  implemented  in  InfoCAD.  Accordingly,  in  addition  to  the  two  previously  known  input

values (j and c), a further parameter must be specified in the dialog for the material properties, namely the dilatancy angle (

y £ j). For the special case of an associated yield rule, the friction angle and dilatancy angle are identical (j = y). Currently,
a maximum friction angle of 60° can be entered in InfoCAD. A friction angle of zero results in the yield function according
to Tresca.

Drucker-Prager
In contrast to Rankine and Mohr-Coulomb, the yield surface of the Drucker-Prager plasticity model (here: with adjustment to
uniaxial strengths) has no edges. The smooth surface of the Drucker-Prager cone (see Figure 13) is an approximation of the
Mohr-Coulomb  criterion  and  is  determined  in  the  same  way  as  for  Raghava  by  the  two  invariants  and  the  respective
strengths for tension and compression:

 0)( 12 =×b-×a+=s cIJF , with: 
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If the tensile and compressive strength are identical, the hydrostatic dependency is omitted here as well and this results to
the Huber-v.Mises yield criterion again.
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Figure 13: Yield surface according to Drucker-Prager in the principal stress space, fc = 20 MPa, ft = 2 MPa

In addition, it is clear from Figure 13 that for the strengths used here, contrary to Mohr-Coulomb, no failure occurs in the

compression-compression zone (plane stress state  s3=0).  For  other  values,  however,  this  is  quite possible.  The following

relationship must be considered: the smaller the difference between compressive and tensile strength, the smaller the angle
between the yield surface and the hydrostatic axis.

Lubliner
While all previously described plasticity models can only inadequately represent the fracture criteria of concrete or its biaxial

material behavior, the yield surface according to Lubliner et al. (1989) in the plane stress state (s3=0) agrees almost exactly

with the failure surface experimentally determined by Kupfer et al. (1969), see Figure 14 (center).
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Figure 14: Yield surface according to Lubliner in the principal stress space, fc = 20 MPa, ft = 2 MPa, fcb = 1,16·fc

The Lubliner surface is composed of three components. This is clearly shown by the yield criterion, which contains maximum

values of the positive <smax> and negative <-smax> stresses put in Macaulay brackets

 ,0)1(3 cmaxmax12 =×a--ñsá-×g-ñsá×b+×a+×=
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Depending on the stress state, a reduced form of equation V18 results. As already mentioned, three cases are possible:

1) Tensile stresses present -> fourth term of the right-hand side is omitted.

2) Biaxial compression -> third and fourth term omitted.

3) Triaxial compression -> third term omitted.

Due to the congruent areas at biaxial and triaxial compression, the governing yield surface can finally be described by two
terms.  In  Figure 14  (left),  these  are  shown in  color  for  differentiation:  gray  area  ->  tensile  stresses  present,  blue  area  ->
triaxial compression. In addition to the tensile and compressive strength, the equibiaxial compressive strength factor (factor
= fcb / fc ) can also be adjusted in the material properties dialog for the Lubliner model. The default value (for concrete) is
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suggested to be 1.16 times the uniaxial compressive strength ( fc ):

fcb = 1.16·fc . (V20)

The shape of the yield surface is also influenced by the ratio of tensile and compressive meridians at triaxial  compression,

which is described by the parameter jc  (see Eq. V19).  Values between 0.5 and 1 are theoretically possible (0.5 < jc £ 1).

Displayed in deviator plane, these two limits result in a triangle (jc = 0.5 Rankine) or a circle (jc = 1 Drucker-Prager). Here

the value was set to jc = 2/3 according to the recommendation in Lubliner et al. (1989) and Richart et al. (1928).

In the same way as with Mohr-Coulomb, a non-associative yield rule rather than an associative yield rule is used to ensure
sufficient  dilatancy,  i.e.  volume  increase  during  plastic  yielding.  Plastic  potential  and  yield  condition  are  now  no  longer
identical. The plastic strain increments are determined by deriving a potential function

 

s¶

s¶
lD=eD

)(pl G
(V21)

and,  as  a  result,  are  no  longer  perpendicular  to  the  yield  surface.  Following  the  Lubliner  yield  condition  (V18),  which  is
composed  of  different  Drucker-Prager  surfaces,  a  Drucker-Prager  type  function  is  also  used  as  the  plastic  potential.  The
potential function is as follows:

 ( ) 1
2

t2
3

)tan(
)tan(2)( IfJG ×

y
+x××y+×=s (V22)

In addition to the two stress invariants I1  and J2, the input variables are the uniaxial tensile strength ft, the dimensionless

parameter x, and the dilatancy angle y. Both the parameter x and the dilatancy angle y significantly determine the shape

of the potential function, see Fig.15 (x = 0: linear, x > 0: hyperbolic).
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Figure 15: Linear and hyperbolic potential function

While  in  almost  all  scientific  publications  (thus  also  in  InfoCAD)  the  parameter  x  is  consistently  set  to  0.1,  very  different

values for y are proposed for describing the dilatancy behavior of concrete. Good results have been obtained with dilatancy

angles from y = 11.3° to y = 56°, see Poliotti & Bairan (2019). 

Considering this range of values, a dilatancy angle of y = 30° is chosen in InfoCAD.

Note: From a non-associative yield rule follows an asymmetric elasto-plastic tangent and thus an asymmetric stiffness matrix.
For  an  efficient  solution  of  the  equation  system,  the  elasto-plastic  tangent  is  symmetrized  in  InfoCAD,  see  Pande et al. 
(1990). However, to ensure numerical stability, it is recommended to perform the calculation with a constant stiffness.
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Linear Hardening
In contrast to the material type Stahl or a standardized concrete type, the material type Frei offers the possibility to consider
a linear hardening. Its degree is defined by the hardening modulus H, which is to be specified in the dialog for the material
properties. When entering the modulus, the plastic material behavior is also directly defined. While a linear hardening can
be realized by a positive hardening modulus, the modulus is set to zero for modeling an ideal plastic behavior.
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Figure 16: Uniaxial stress-strain diagram. Material behavior:
1) ideally plastic, 2) with linear hardening for Rankine

Using the Rankine yield condition as an example, it is shown below how the hardening is to be included in the respective
equations. An isotropic hardening is characterized by an expanding yield surface in the stress space; in contrast to kinematic

hardening, the orientation does not change. To realize this expansion, a term q(k)  dependent on the internal (hardening)

variable k is added to the initial yield stress ft,c (cf. Eq. V15):

 ( ) 0)(3cos32),( ct ,12ct , =k+×-+Q×××=ks qfIJF (V23)

In InfoCAD, this term is described by the following linear function: q(k) = H · k.  A detailed derivation and explanation of
the  numerical  implementation  is  omitted  here.  Instead,  we  refer  to  the  publications  by  Chen & Han (1988)  and
Simo & Hughes (1998).

Combined Model (Plasticity-Damage)
The constitutive relations of the elasto-plastic damage model are obtained by combining Eq. V1 and Eq. V12 as follows:

s = (1 - D) C : ( e - e pl ) (V24)

A  coupling  of  stresses  s  and  effective  stresses s is  carried  out  here  by  means  of  the  scalar  damage  variable  D,  which
reduces the stiffness isotropically in analogy to the procedure for the pure damage models:

 s×-=s )1( D (V25)

To  determine  the  plastic  strains  e 
pl,  the  yield  condition  according  to  Lubliner et al. (V18)  is  first  evaluated  taking  into

account the effective stresses:

 0)()1()~(3)~,( pl
ccmaxmax

pl
12

pl £es×a--s-×g-s×eb+×a+×=es IJF (V26)

Input variables are, in addition to the effective stresses, two internal variables (Lee & Fenves, 1998),  the tensile (  et
pl  )  and

compression ( ec
pl ) plastic strains:

 Tpl
c

pl
t

pl ][~ ee=e (V27)

Their  evolutions,  which  describe  the  hardening  and  softening  of  the  material,  can  be  calculated  as  a  function  of  the

eigenvalues of the plastic strain tensor and the triaxial factor
 )( sr

(V5) as follows:
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The factor
 )~( pleb

in Eq. V26 is here, in the case of the combined model (plasticity and damage), not constant (cf. Eq. V19),
but dependent on the two internal variables:
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After iterative calculation of the plastic multiplier Dl  with the return mapping method, the scalar damage parameter D is

determined as a function of the internal variable 
 pl~e . Due to the separation of tensile and compressive plastic strains, the

same procedure is used for the damage parameter. With the parameter for tension
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and compression
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the isotropic damage for the three-dimensional stress state is finally determined (V23):

D = 1 - ( 1 - sc · dt )·( 1 - st · dc ) (V32)

Since it is currently not possible to simulate load changes (hysteresis) in InfoCAD, opening or closing of cracks is not taken
into account when calculating the damage parameter ( sc = st = 1 ).
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Figure 17: Uniaxial compressive stresses

For  a  realistic  description  of  the  material  behavior,  uniaxial  stress-strain  relationships  are  used,  which  are  based  on  a
decomposition  of  the  strains  into  elastic,  plastic  or  inelastic  components.  Separated  for  compression  and  tension
(elongation), the relationships are as follows (Figs. 17 and 18):

ec = ec
el + ec

pl = ec
in + sc / E0 , with: ec

pl = bc · ec
in

(V33)

et = et
el + et

pl = et
in + st / E0 , with: et

pl = bt · et
in

(V34)

Here, the factor bc or bt determines the ratio of plastic and inelastic strains and thus also the inclination of any unloading

paths. While no damage of the material occurs with a factor of bc,t = 1 ( D = 0 ) and loading and unloading paths have the

same inclination, no plastic strains remain after unloading with a factor of bc,t = 0. The influence of the parameter can be

clearly illustrated by means of both limiting cases (see also Figs. 17 and 18). However, these two cases do not represent a
realistic  material  behavior  of  concrete  during  loading  and  unloading  processes.  Experimental  results  often  show that  the
ratio  of  plastic  to  inelastic  strains  takes  the  value  bc = 0.7  (compression)  and  bt = 0.1  (tension).  Consequently,  these  two

values are also used in InfoCAD.
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Figure 18: Uniaxial tensile stresses

The uniaxial stress-strain relations implemented here are defined separately for certain areas. First, the functions for a pure
compressive stress state are explained. The first of a total of three sections describes the linear elastic material behavior at
the start of loading:

sc( ec ) = E0 · ec   for    sc( ec ) £ 0.4 · fc (V35)

Following the curves according to the standard, 0.4 times the compressive strength is taken as the initial yield stress here.
After reaching this limit value, the tangential stiffness (initial: E0 ) is successively reduced until a horizontal curve is obtained

at sc( ec ) =  fc. For this second section, the following analytical function from CEB-FIP Model Code 1990 is used due to its

good agreement with experimental results:
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To ensure a continuous transition between the first two sections of the stress-strain relation, the following secant modulus
is used to evaluate Eq. V36 instead of the elastic modulus of the undamaged material ( Eci = E0 ):
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The  limit  compression  ec1  is  to  be  specified  a-priori  in  the  same  way  as  the  compressive  strength  in  the  dialog  of  the

material  properties.  For a realistic representation of the post-cracking behavior of concrete  and minimization of  the mesh
dependency,  the  approach  of  Krätzig & Pölling (2004)  is  used  here.  This  third  and  final  section  of  the  stress-strain
relationship under monotonic compressive loading is described by the following function:

 ( )
1

c1

2
cc

cc
c

c1cc
cc

22

2
)(

-

÷
÷

ø

ö

ç
ç

è

æ

e×

e×g
+e×g-

×

e××g+
=es

f

f
 for sc( ec ) > fc (V38)

with

 
0

)1(
2

2

2

0

cc
cc1

c
c

c1c
2

c >

÷
÷

ø

ö

ç
ç

è

æ
÷÷
ø

ö
çç
è

æ ×
+-×e×-×

e××p
=g

E

fb
b

f
g

f

(V39)

and  the  element  and  volume  based  compressive  fracture  energy:  gc = Gc / lc  .  In  order  to  nearly  eliminate  the  mesh

dependence during softening, the compressive fracture energy Gc is coupled to the element size (volume Ve ). Simplified for

solid  elements,  the  characteristic  length  lc  is:  lc = Ve
1/3  (Oliver, 1989).  Experimental  tests  on  specimens  have  also  shown

that for normal concrete the amount of compressive fracture energy Gc is in the range between 10 and 25 kN/m (Vonk, 

1992). In InfoCAD, however, values between 5 and 500 kN/m are permitted.

The influence of the energy on the free parameter gc, which defines the area under the stress-strain curve, is evident from

Eq. V39. Due to the condition gc > 0, a negative denominator must also be excluded. Consequently, to avoid a snap-back

behavior, the characteristic length should not exceed the following value (Krätzig & Pölling, 2004):
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lc £ Gc / ( fc · ( ec1 · ( 1 - bc ) + bc · fc / Ec )) (V40)

For  a monotonic  compressive loading,  the stress-strain  diagram consisting of  three  parts  is  shown in  Figure  17 (left)  and
Figure 19. Figure 19 also clearly  shows the good agreement  between numerical  (InfoCAD)  and experimental  (Sinha et al.,
1964) results.

Except for the compressive fracture energy (here: Gc = 26 kN/m), all parameters for the comparative calculation were taken

from the publication by Krätzig & Pölling (2004).
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Figure 19: Uniaxial stress-strain diagram (compression): Comparison of experimental
(Sinha, Gerstle & Tulin, 1964) and numerical (InfoCAD) results

After describing the stress-strain relationship for compressive loading implemented in InfoCAD,  the functions for a tensile
load are now specified below. Only two sections need to be defined for this purpose. The first section describes the linear
elastic material behavior up to the tensile stress ft

st( et ) = E0 · et    for st( et ) £ ft (V41)

and  the  second  section  describes  the  softening  material  behavior  (decreasing  branch).  The  function,  which  realistically
represents the softening of concrete under monotonic tensile loading, is based on the scientific work of Cornelissen et al. 
(1986) and Hordjik (1992). The following stress-crack opening relationship was empirically determined during experiments:
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Using the inelastic strains et
in (V34), the stress-crack opening relation is finally transformed into a stress-strain relation:

st( et ) = st(w = et
in · lc)    for st( et ) > ft (V43)

The volume-specific fracture energy gf = Gf / lc and thus the dependency of the decreasing branch on the element size 

(Bažant & Oh, 1983) is already taken into account in Eq. V43:
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After solving the integral over the critical crack width wc, it follows:

Gf = 0.195 · wc · ft (V45)

In addition to the tensile strength ft, the fracture energy Gf or the critical crack width wc must also be specified as a material

parameter. In InfoCAD, the fracture energy was selected as the input variable (see Material Properties dialog). However, the
above equation can be used to directly determine the fracture energy if the limit crack width is known.

Figure 20 shows the stress-strain relationship for monotonic tensile loading. Here it becomes clear that, using the function
generated by Cornelissen et al. (1986) and Hordjik (1992), negative stresses are to be expected as soon as the crack width w
corresponding to the strain exceeds the critical crack width wc: w = et

in · lc > wc (see V42). Since negative stresses are not

permissible, an adjustment must be made for this strain range in the numerical implementation.
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Figure 20: Uniaxial stress-strain diagram

For  example,  in  order  to  exclude  a  kink  in  the  stress-strain  relationship,  which  occurs  when  the  critical  crack  width  is

exceeded if the stress in this area were set to zero á st ( et ) ñ, the stress-crack opening relationship (V42) is slightly modified

for the calculation with InfoCAD. On the one hand, the third term is neglected, thus excluding negative stresses, and on the
other  hand, a factor  for the residual  tensile  strength r  is  introduced so that  stresses never  become zero even at  infinitely

large  strains,  but  asymptotically  approach  the  value  st ( et ) = r · ft  (here  r = 0.02).  The  adjusted  stress-crack  opening

relation is then:
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In addition to the original form, the modified stress-strain relationship for monotonic tensile stresses is also shown in Figure
20. In addition to the different functional curves after reaching the critical crack width, it becomes clear that the deviation of
both tensile stresses before reaching the critical crack width is negligible.

In the same way  as  before  for  compressive  stress,  the  characteristic  length  lc  should  not  exceed  a  certain  value  to  avoid

snap-back behavior. The limit is defined as follows [ Irwin (1958), Hillerborg et al. (1976), Bažant & Oh (1983)]:

lc < Gf · Ec / ft
2

To demonstrate the capability of the stress-strain relationship implemented in InfoCAD, numerical and experimental results
are also compared here. Figure 21 shows the good agreement.
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Figure 21: Uniaxial stress-strain diagram (tension): Comparison of experimental
(Reinhardt & Cornelissen, 1984) and numerical (InfoCAD) results
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Prestressed Structures
Prestressing  is  often  considered  only  as  an  external  load.  Therefore,  no  stress  redistributions  between  concrete  and
prestressing steel can be taken into account. But the consideration of this redistributions is also possible. For this purpose,
the  tendons  are  included  in  the  element  stiffness  matrices  during  the  calculation.  This  method  is  implemented  for  all
element types. The internal forces (normal forces, bending moments, lateral forces) given by the program always correspond
to  the  concrete  section  with  its  reinforcing  steel  layers.  When  analyzing  composite  elements,  these  alone  are  not  in
equilibrium with the external forces since the tendon group forces must be applied while taking into account their spatial
orientation. Because the program assumes that a tendon runs straight between the entry and exit points of an element, an
adequate FE mesh is especially important for beam elements. Area and solid models, on the other hand, generally exhibit a
sufficiently fine discretization.

The stress-strain  curves  of  prestressing steel  in  the serviceability  limit  state have a rising branch  with  Ep  and  a  horizontal

upper branch at fp0,1k or ßs. In the ultimate limit state the upper branch is at fpd. Depending on the concrete, the following

strengths are assumed for fpd.

• Concrete DIN 1045:1988  fpd = ßs

• Concrete DIN EN 1992-1-1, DIN 1045-1  fpd = 1,1·fp0,1k/gR mit gR = 1.3

• Concrete EN 1992-1-1, ÖNORM B 4700, SIA 262  fpd = fp0,1k/gs mit gs = 1.15

Notes on Convergence Behavior
The implemented analysis methods (Newton method, arc length method) with tangential stiffness matrix result in a stable
convergence  behavior  given  a  consistent  relationship  between  the  stress-strain  relation  and  its  derivative.  As  previously
mentioned, this is especially true of bilinear materials. Reinforced concrete, however, typically displays a poor convergence
due to its more complex material properties. This is caused by crack formation, not continuously differentiable stress-strain
relationships, two-component materials, etc.

Especially  for  checks  of  the  serviceability  and  determination  of  the  tensile  stiffness  with  softening,  markedly  worse
convergence  can  result  due  to  the  negative  tangential  stiffness  in  the  softening  area.  If  this  results  in  a  singular  global
stiffness matrix, it is possible to assume a bilinear function in the tensile section or to perform a calculation without tensile
strength.
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Material properties
In principle, only area, solid, polygon, database cross-sections and structural steel sections can be subjected to a nonlinear
analysis.  For  all  other  cross-section  types  and  for  the  material  types  Beton  and  Timber,  linear  material  behavior  is  always
used as a basis.

In the dialog described below for solid cross-sections with the material type Frei, non-linear material properties are specified.
The material properties not described here, e.g. modulus of elasticity, are described in the general part of the manual.

Material model

Plasticity Damage Plasticity-Damage 

Yield criterion

• Drucker-Prager 

• Huber- von Mises 

• Lubliner 

• Mohr-Coulomb 

• Raghava 

• Rankine 

Damage surface

• De Vree: Damage model according to De Vree with the parameters A and B.

• Mazars: Damage model according to Mazars with the parameters At , Bt, Ac and Bc.

Strengths [MN/m²]

Compression: Yield strength under compressive stresses fc (positive value)

Tension: Yield strength under tensile stresses ft (positive value)

Material parameters for Mohr-Coulomb

Friction angle [°]: Resistance that occurs when sliding in a shear joint

Dilatancy angle [°]: Affects the change in volume during plastic deformation

Cohesion [MPa]: Adhesive strength or internal cohesion of individual particles (e.g. in soil or concrete).

More material parameters

Factor comp. (equibiaxial): The standard case for concrete fcb / fc = 1.16 is suggested, which is used for the yield condition

according to Lubliner. (positive value).

Hardening modulus: Value describing hardening at strains above tensile and compressive strength.

Fracture energy compression / tension [kN/m]: Specific fracture energies for the material model plasticity-damage.

Ultimate compressive strain [‰]: Strain ec1 under the maximum stress fc for the material model plasticity-damage.

The uniaxial stress-strain relation can be visualized via the button  and adjusted if necessary. For the combined model (
plasticity-damage),  only  the  characteristic  lengths  has  to  be  specified  for  the  visualization.  In  the  calculation,  this  is
determined internally in dependence of the element volume (lc or gc in Eq. V38 and gf in Eq. V42).

Material linear

This switch causes a linear-elastic material behavior for this cross-section in the nonlinear system analysis.
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Analysis Settings
The  following  settings  are  made  on  the  Ultimate  Limit  state  and  the  Serviceability  tabs  in  the  Settings  for  the  nonlinear
analysis of the menu item Analysis - Settings.

With the nonlinear system analysis, load cases are calculated under consideration of physical and geometrical nonlinearities,
whereby the latter only becomes active if the second- or third order theory is activated in the load case. The load bearing
capacity and serviceability check as well as the stability check for fire differ according to the load case that is to be checked,
the material safety, the different stress-strain-curves and the consideration of the concrete tensile strength.

Consider the following load cases

The load cases from the left list box are calculated.

Start reinforcement

The nonlinear system analysis is carried out on reinforced concrete sections based on the reinforcement selected here. This
results from a reinforced concrete design carried out in advance. The starting reinforcement Null  corresponds to the base
reinforcement  of  the  reinforcing  steel  layers.  When  performing  a  check  for  fire  scenarios,  special  conditions  apply  as
explained in the Structural Analysis for Fire Scenarios chapter.

Automatic reinforcement increase frame

For the ultimate limit state check of pure frameworks a reinforcement increase is carried out for reinforced concrete sections
to achieve the required load-bearing safety.

Concrete tensile strength;  Factor c

This option defines the behavior in the tensile zone for the nonlinear internal forces calculation for all  reinforced concrete
sections. By default the ultimate limit state check is performed without considering the concrete tensile strength.

With softening (beams) With softening (area elements) Bilinear

Layers per area element

Number of integration levels of an area element. Members subject to bending should be calculated with 10 layers. Structure
mostly subject to normal forces can be adequately analyzed with 2 layers.

Consider tendons

The tendons are considered in the calculation of the element stiffness matrices.
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Constant stiffness

The iteration is done with a constant stiffness matrix. If the switch is not set, then a tangential stiffness matrix is used.

Phi-c Reduction

Method for determining the stability  of  embankments  (serviceability  tab).  Successive reduction of  soil  parameters  (friction

angle j and cohesion c) until the failure condition (embankment failure) occurs. The Phi-c Reduction according to Fellenius
is only activated in conjunction with the Mohr-Coulomb plasticity model. If the switch is set but no Mohr-Coulomb material
is defined, the method is not used.

Analysis method

The following methods are available:

• Newton, Newton time steps

Max. iterations per load step:
Maximum number of iteration steps, in order to reach convergence within one load step. If the error threshold is
exceeded, the iteration is interrupted and an expectable reduced load level is determined on the basis of load. If it
is not possible to fall below the error limit within the iteration steps per load step, the iteration is aborted and load-

controlled the loadable load factor (£ 1.0) or the load at an intermediate time is determined by interval nesting.

Time increment and Duration:
The load-time function is defined in the database in the folder Structure description > Instationary load-time
function and then assigned to loads. The time increment and the time duration must be adapted to the load time
function. With regard to the special procedure for activating the Phi-c Reduction, please refer to the section ‘
Bearing capacity failure of foundation and embankment failure’.

• Arc length

Initial arc length:
The initial arc length can either be entered manually (between 0.001 and 100) or calculated automatically
depending on the system stiffness and load. While the arc length does not exceed the maximum value of 100 in
the numerical calculation, significantly smaller arc lengths than 0.001 can occur. If the arc length is reduced to less
than 1e-12 (1e-5 for Solids with Material type Frei), the calculation will be aborted. The input value is at the same
time the maximum value, if a checkmark is set at "Up limited".

Iterations per arc length:
Due to the influence of the iteration number on the arc length during the calculation, when the selected value is
reached due to insufficient accuracy of the numerical solution, the number is doubled once. If divergent behavior
occurs during the subsequent iterations, or if the error tolerance is not reached even after the increase, the arc
length is halved.

Control:
There are three ways to control the arc length method. This can be done via the number of increments to be
calculated as well as via the first bifurcation point (inactive at constant stiffness) or, if a certain load level is to be
achieved, via the load factor (correct to four decimal places).
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Examples

Flat Ceiling With Cantilever in State II
This  example  shows  a  ceiling  slab  that  has  already  been  analyzed  in  the  EN 1992-1-1  design  manual.  For  this  slab,
deformations in state II in the serviceability and the ultimate limit states are to be determined for comparison with the elastic
calculation. serviceability limit state and ultimate limit state.
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Columns:

Concrete: C30/37 acc. to EN 1992-1-1

Reinforcing steel: B500A

Mesh width: 35 cm

Ceiling height: 26 cm

Walls:

fctm,fl = 3.9 MN/m², EN 1992-1-1, Eq.(3.23)

   
Element system and loads from
"Beispiele zur Bemessung nach Eurocode 2 – Band 2: Ingenieurbau"

Loads

Load case 1, 
G permanent loads [kN/m²]

Load case 2 to 9, 
Q field 1 to 8 [kN/m²]

Due to the normal forces to be expected in the slab,
shell  elements  are  to  be  used  for  the  nonlinear
structural  analysis  and  horizontal  support  supports
should  preferably  be  free  of  restraint.  Because  the
longitudinal reinforcement has an essential  influence
on  the  deformations  within  a  nonlinear  structural
analysis,  a  realistic  reinforcement  arrangement  is  to
be  ensured.  For  this  reason,  a  linear-elastic  static
calculation  of  load  cases 1  to  9  with  subsequent
design  according  to  EN 1992-1-1  using  the  basic
reinforcement given below is carried out.

For  the  subsequent  nonlinear  system  analysis,  load
cases 21 to  23 have  already  been entered  with  load
groups.

In  load  cases 22,  the  nonlinear  creeping  of  the
concrete  is  additionally  taken  into  account  with  the

creep  coefficient  j = 2.5  and  the  shrinkage  of  the

concrete is assumed to be ecs = -40·10-5.
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 Reinforcement for area elements

No. Lay. Qual. d1x d2x asx d1y d2y asy as Roll-
[m] [m] [cm²/m] [m] [m] [cm²/m] fix ing

1 1 500M 0.045 5.670 0.035 5.650 Warm
2 500M 0.035 7.850 0.025 5.030 Warm

2 1 500M 0.045 5.670 0.035 5.650 Warm
2 500M 0.035 7.850 0.025 11.340 Warm

 as  Base reinforcement
 d1  Distance from the upper edge
 d2  Distance from the lower edge

 The z axis of the element system points to the lower edge

Bending reinforcement from design of the permanent and temporary situation

Only in the area around the columns and the corners does a reinforcement increase result in the upper reinforcement layers,
which approximately corresponds to the additional reinforcement provided in the literature example.

 
Additional reinforcement asx.1 [cm²/m]

0.01
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15.00
 

Additional reinforcement asy.1 [cm²/m]

Analysis settings
After the elastic static calculation of load cases 1 to 9 and the subsequent design according to EN 1992-1-1, the nonlinear
system analysis is selected in the static analysis settings and the following settings are made.

  

For  the  load  cases  (21  and  22)  for  serviceability,
softening and a residual tensile strength of c·fctm,fl =

0.1·3.9  =  0.39  MN/m²  are  calculated  in  the  tensile
zone of the concrete.

Load case 23 for the ultimate limit state is calculated
without considering the concrete tensile strength.

In  order  to  increase  the  accuracy  of  the  calculation,
the  error  threshold  is  set  to  0.1 %  in  the  load
groups.  Therefore,  the  number  of  maximum
iterations per load level is increased to 500.
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Deformations

The  different  deformation  results  are  compared  below.  For  better  comparison  all  non-linearly  calculated  load  cases,
including the one in the ULS, are calculated with the load G+0.3·Q. In all cases a load factor of 1.0 can be achieved.

   
Load cases 21: Deformations uz [mm]
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Load cases 22: Deformations uz [mm]

In the following, the maximum calculated deformations in state II are compared with the results determined in state I (see
example for EN 1992-1-1):

max uz [mm]

Load case Calculation   Literature 

(11)    G+0.3·Q with elastic material behavior  (state I) 10 10

(12) Creeping (j=2.5 by LC 11) with elastic material behavior  (state I) 23 -

(13) Total (load case 11 + load case 12)  (state I) 33 -

 21 Nl. SLS (G+0.3·Q, j and ecs=0 with softening) 18 20

 22 Nl. SLS (G+0.3·Q, j=2.5 and ecs=-40·10-5 with softening) 43 40

 23 Nl. ULS (G+0.3·Q, j and ecs=0 without concrete tensile strength) 56 -

Concrete stresses

Load case 22: Concrete stresses [MN/m²] in y-direction at the bottom
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Experiment of Fracture of a Reinforced Concrete Slab
The system described below was analyzed experimentally by Jofriet & McNeice in 1971 (taken from Krätzig & Meschke 2001
). The goal is to demonstrate the plausibility of the achieved calculation results. For the crosscheck a system with 20x20 shell
elements was used as illustrated below.

  

Material:

 fck
= 37.92 MPa

 Ec
= 28613 MPa

 vc
= 0.15

 fctm
= 2.91 MPa

 Es
= 201300 MPa

 fy = 345.4 MPa

Element system with supports, load and the specified material parameters.

The load-displacement curve determined in the test for the slab middle is contrasted with the results of the static calculation
in the following diagram. For the SLS the calculation method "Newton time steps" was chosen with 60 time increments and
an error threshold of 0.1%. The material parameters were set according to the specifications of the authors. The material
type CX-EN (EN 1992-1-1) was used for this.
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Experiment (Jofriet & McNeice 1971)

with softening in the concrete tensile area; c=0.3

with softening in the concrete tensile area; c=0.2

with bilinear concrete tensile strength; c=0.2

without concrete tensile strength

Load-displacement curves from the crosscheck in SLS and experiment (Jofriet/McNeice)

In order to demonstrate the mode of action of the methods implemented in the program for the concrete tensile stresses,
four  variants  were  calculated.  The  curve  accounting  for  the  concrete  tensile  strength  with  softening  (c=0.3)  exhibits  the
closest agreement with the test results. The behavior at the beginning of crack formation as well as close to load-bearing
capacity display a large level of agreement.

The curve for the bilinear behavior in the concrete tensile area was calculated with the value (c=0.2).  The stiffness  of  the
slab is thus, as expected, underestimated at the beginning of crack formation. The load-bearing safety is, however, hardly
influenced by this. This means that the calculation is on the safe side.

The curve for the 'naked state II' is for the most part determined by the characteristic curve of the reinforcing steel and thus
has exhibits nearly linear behavior in the area under examination.
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Experiment of a Reinforced Concrete Frame
The  following  reinforced  concrete  frame  was  analyzed  by  Ernst,  Smith,  Riveland  &  Pierce  in  1973  (taken  from  Krätzig  &
Meschke 2001). The goal is to demonstrate the plausibility of the achieved calculation results as well as the mode of action
of  different  approaches  for  determining  concrete  tensile  strength  and  tension  stiffening.  The  static  system  with  material
parameters is shown below.

System with sections, load and dimensions [mm]

Material parameters of the experiment:

Concrete: fcm = 40.82 MPa,  ec1 = -2.36

Reinforcing
steel:

Æ 9.53: fy = 472.3 MPa,  Es = 209 GPa (cold-drawn)   

Æ 12.7: fy = 455.0 MPa,  Es = 200 GPa (hot-rolled)   

Material parameters of the crosscheck:

Concrete: CX-EN (EN 1992-1-1),  Ec = 33600 MPa,  jc = 0.07   

fck = fcm - 8 = 32.82 MPa,  fctm = 2.2 MPa

Reinforcing
steel:

Æ 9.53: fyk = 472.3 MPa, Æ 12,7: fyk = 455.0 MPa   

Es = 200 GPa,  (ft/fy)×k = 1.05 (bilinear)

Analysis settings:

SLS with softening (c = 0.2)

or without concrete tensile strength

Analysis method: Arc length

Control: Number of increments = 64 / 52

Iterations per arc length: 20

Stiffness: tangential

Initial arc length: £ 0.03

The following figure shows stress-strain-curves of the reinforcing steel  used for the experiment and the crosscheck within
the strain area up to 25 ‰.
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Stress-strain-curves of reinforcement steel from experiment and calculation

The crosscheck was performed according to the arc length method and the second-order theory. Softening in the concrete
tensile  area  was  considered   for  the  first  calculation  variant  whereas  no  concrete  tensile  strength  was  assumed  for  the
second variant. According to the experiment, cracking occurs at a limit load of P = 5 kN corresponding to a concrete tensile
strength  of  about  2.2 MPa.  To  take  into  account  the  stress-strain  curves  of  the  concrete  according  to  the  experiment,  a

concrete tensile strength fctm of 2.2 MPa and a creep coefficient jc of 0.07 were assumed. The attaining of the system limit

load is indicated by stability failure. The failure is caused by reinforcement flow at a load of approx. 35-40 kN and formation
of a plastic hinge in the frame center.  The slightly lower failure load is  due to different stress-strain-curves for reinforcing
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steel decisive for the experiment and the crosscheck. As expected, the calculation without tensile strength results in a lower
bound for the load-displacement curve of the frame center.
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Load-displacement curves from the crosscheck and experiment (Ernst et al. 1973)

Pull Test With Hardening
The  recalculation  of  the  pull  test  shows  the  behavior  of  steel  with  or  without  strain  hardening.  A  solid  model  with
tetrahedron elements  VT10  is  used.  To  simulate  the  hardening  of  the  steel  the  material  type  Frei  with  the  yield  criterion
Huber-v.Mises is used. The 220 mm long specimen, shown below, reacts with plastic behavior when the yield strength ( fyk

= 240 MPa)  is  exceeded,  as  can  be  easily  seen  from  the  stress-displacement  curve.  The  calculation  was  performed
deformation-controlled using the arc length method.
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Prestressed Concrete Structure
In this example an experiment of a prestressed two-span beam DLT 2.1 with subsequent bond has been recalculated, which
has been carried out at the TU Dortmund as part of a research project of the BASt (Maurer et al., 2015). The dimensions of
the test beam are shown below. The structure has a T-beam cross section with a constant height of 80 cm. Also the flange
dimensions are constant about the length of the beam with b/h = 80/15 cm. The web thickness within the fields and at the
inner support is 30 cm. In the area of the end supports the web thickness increase to 60 cm. A mesh width of 5 cm was
chosen for the calculation model. The material type Frei was selected for the solid model made of cuboid elements VQ83.
For the reinforcing steel layers, steel beams were used for the longitudinal and stirrup reinforcement. The applied material
properties  according  to  Hegger  et  al.,  BASt,  Book  B 150  (2020)  are  given  below.  The  tendon  group  is  automatically
implemented in the element stiffness matrices of the solid elements by the program during the load case calculation. The
vertical supports have a spring of 500 MN/m per support axis.

   

3D view of the calculation model with solid elements in the system viewer
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Reinforcement

Se-No. Description As [mm²] E-Modulus [MN/m²]  fyk [MN/m²]

11 Longitudinal reinf. ø25 + 1.5·ø16 (bottom)   792 199501 555
12 Longitudinal reinf. ø20 + 1.5·ø16 (bottom)   616 200506 567
13 Longitudinal reinf. 1.5·ø16 (bottom) 302 205200 554
14 Longitudinal reinf. 2·ø12 (top) 226 200750 532
21 Stirrups ø8 50 184000 475
22 Stirrups ø12 113 200750 532

Material properties of solid elements made of concrete

Material type Frei
Material model Plasticity-damage
E-Modul [MN/m²] 32860
Gamma [kN/m³] 23
Poisson's ratio [-] 0.2

Compr. strength [MN/m²]  fcm = fck + 8 = 41.15

Tensile strength [MN/m²]  fct = 2.688

Ultimate compressive strain [‰]    2.363
Compr. fracture energy [kN/m]   15
Tensile fracture energy [kN/m] 0.09

The steel plates at the prestressing anchors, the supports and the presses were assumed to be linear-elastic.

The nonlinear system analysis was performed with the following settings:

   

 Load data load case 4: SLS, Arc length

 Load group (GRL)
 Theory: 1. order theory 
 No soil pressure > 0: No; No support reac. < 0: No; Error threshold [%]: 0.10
 Additional global load factor: 1.00; Predeformation: 0
 Consider concrete creeping in the nonlinear analysis: No

 Selected load cases
No. Label Factor

 1  Deadload  1
 2  Prestressing  1
 3  2·f(t)·1000 kN  1
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At  about  700 kN,  all  load-displacement  curves
show  a  kink  in  their  curve  due  to  cracking.  In
the experiment, reinforcements were installed at
a  press  load  of  1743 kN  because  of  the
imminent  failure  of  the  structure.  As  can  be
seen  in  the  figure  on  the  left,  the  structure  is
very  sensitive  to  the  set  error  threshold.  The
following figures were calculated with the error
threshold of 0.1%.

Load-deformation curves at the load location in field 1 from the comparative calculation and the experiment (Maurer et al., 
2015)

Deflection for press forces of 1500 kN (20 fold superelevated)
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Measured stirrup stress s [MN/m²] at press forces of 1200 / 1400 / 1540 kN BASt Book B 150, A.2.2.1 (c), (d), (e)

Stirrup stresses sv [MN/m²] at press forces of 1200 / 1400 / 1540 kN

0,0

100,0

300,0

400,0

450,0

500,0

Crack formation of the experiment for press forces of 800 / 1200 / 1400 / 1540 kN (BASt Book B 150, A.2.1.1 (b), (c), (e))
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Reinforced Concrete Corbel
Based on the experimental results of Mehmel and Freitag, which were published in 1967 in the journal "Der Bauingenieur",
the  damage  models  implemented  in  InfoCAD  are  analyzed  below.  The  main  focus  is  on  the  numerically  predicted  load-
bearing  capacity  and  damage  prediction  ('crack  propagation').  Differently  reinforced  rectangular  and  trapezoidal  corbels
were  investigated  in  the  test  series.  The  load  was  applied  either  directly  or  indirectly  via  additionally  laterally  arranged
auxiliary  corbels.  For  the  comparative  study,  a  reinforced  rectangular  corbel  with  direct  load  application  is  used,  since
numerical results with different approaches for the definition of the material behavior are already available for this test (I.2,
reinforcement according to Mehmel).  Figure 1 shows the corbel  created with InfoCAD, including the geometry,  boundary
conditions and reinforcement. A three-dimensional calculation is essential here, since a simplified finite element simulation
with plain or shell elements would underestimate the load-bearing capacity by about 40% (Krejci and Mang, 1986).

Figure 1: Geometry, boundary conditions and reinforcement

Two simplifications  were  made  when  modeling  the  reinforcement.  The  first  simplification  results  from the  facts  that  the
distance of the stirrups in the lower part of the column was not specified by Mehmel and Freitag and that a larger number
has no decisive influence on the load-bearing behavior.  Instead of  seven stirrups,  only  three  equidistant  arranged stirrups
were  considered.  The  second  simplification  concerns  the  longitudinal  reinforcement  in  the  lower  and  upper  part  of  the
crossbeam  as  well  as  the  diagonal  reinforcement.  Reinforcement  bars  that  are  directly  adjacent  to  each  other  were
combined into one cross-section:

Crossbeam top: 2x[2xÆ16 + 1xÆ14], diagonal bars:  4x[2xÆ14] (cf.  Mehmel and Freitag, 1967).  The reinforcement in the

thickness  direction  was  assumed  to  be  Æ8  everywhere.  A  detailed  list  of  bar  diameters  used,  quantities  installed  and
strengths is given in Table 1.

Quantity Type Æ Location E-Modulus [MPa] fyk [MPa]

9 Stirrups 8 Crossbeam: 5, Column: 4 206000 430

4 Bars 8 Crossbeam: 2x1 left, 2x1 right 206000 430

10 Bars 16 Crossbeam: 2x2 top, 2x1 bottom

Crossbeam: 2x1 left, 2x1 right

206000 430

10 Bars 14 Crossbeam: 2x1 top, Diagonal: 4x2 206000 430

4 Bars 18 Column: 4x1 206000 430

Table 1: Quantity and diameters of reinforcement bars and material properties

In  addition  to  determining  the  steel  bar  strengths  (~4400 kg/cm²  corresponds  to  ~430 MPa),  the  concrete  compressive
strength was also determined during the tests. The result was a cube compressive strength of fc = 226 kg/cm². The modulus

of elasticity and the tensile strength are not mentioned in the publication by Mehmel and Freitag. In order to compare the
InfoCAD results with the other numerical results, the material parameters for concrete were chosen as follows:
 E = 21870 MPa, ν = 0.2, fc = 22.6 MPa, ft = 2.3 MPa.

The numerical analysis is performed using both isotropic damage models available in InfoCAD (De Vree and Mazars). Table 2
shows the parameters for defining the corresponding damage functions or stress-strain relations.

N Damage model A B At Bt Ac Bc

1 De Vree 0.45 400 - - - -

2 Mazars - - 0.7 auto 0 auto

Table 2: Damage parameters
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Taking advantage of the double  symmetry,  the calculation is  performed with  only  one quarter  of  the reinforced concrete
corbel.  In  addition,  the  influence  of  the  element  size  on  the  numerical  result  is  shown  on  the  basis  of  two  different
discretizations  (see  Figure 2;  Mesh A:  4097  tetrahedral  elements  and  324  beam  elements,  Mesh B:  94968  tetrahedral
elements and 939 beam elements).

Figure 2: Discretization of the reinforced concrete corbel

The arc length method was used as the calculation method in all  cases:  Error  threshold 1%; Iterations  per  arc  length 20;
Initial arc length 0.1; Up limited; Constant stiffness. A displacement-controlled load was applied. Steel plates are placed at
the load application points.

Figure 3 illustrates the crack propagation (traced here) recorded photographically during test execution. The condition of the
concrete within the white areas before reaching the failure load is not known, see also Mehmel and Freitag (1967).

Figure 3: Crack propagation during test execution

The  numerically  determined  damage  distributions  shown  in  Figure 4  are  comparable  to  the  crack  distributions  observed
during  the  experiment.  Due  to  the  continuum-based  damage  formulation  used  in  InfoCAD,  the  cracks  are  not  defined
discretely but smeared. Therefore, there is a direct correlation between element size and 'crack width'. A comparison of the
damage distribution resulting from different discretization (see Figure 2)  shows this  very  clearly,  cf.  Figure 4 top (Mesh A)
and bottom (Mesh B).

The crack propagation associated with the load increase causes a significant increase of the stresses in the reinforcing bars
in the damage-relevant areas of the structure, see Figure 5. While in the test the diagonal  bars  started yielding before all
other bars, in the numerical simulation the internal stirrups of the connected crossbeams reach the yield stress first. This is
due to the fact that numerically, contrary to the observations during the experiment, up to a load of 70 t, no gaping crack
occurs from the point of load application to the indented corner at the other side of the load (cf. Figure 3 and 4, center).
After  verification  of  damage distributions  and  steel  stresses,  the  two  damage  models  are  finally  analyzed  with  regard  to
their predictions of the load-bearing capacity. 
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Figure 4: Damage distribution – De Vree (D = 0: white, D > 0,9: black)

Figure 5: Steel stresses (Mesh B) – De Vree (sV = 0: white, sV = 430MPa: red)

A very good agreement is achieved here for the ultimate load. While an ultimate load of PBr = 93.3 tons was determined in

the  test,  values  between  883 kN  and  962 kN  are  predicted  numerically  (depending  on  the  damage  model  and
discretization).
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Figure 6: Comparison of experimentally determined ultimate load (93.3 t) and numerically
determined load-displacement curves (chosen parameters, see Table 2)
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Unfortunately, no comparison of load-deformation curves can be made because the load history was not recorded during
the tests. Therefore, simulation results from a total of four different publications (Meschke 1989, Hofstetter & Mang 1995,
Suanno 1995,  Tikhomirov  &  Stein  1999)  serve  as  reference  solutions,  see  Figure 6.  Taking  the  InfoCAD  solutions  into
account, only minor differences between the individual load-displacement diagrams can be identified. First of all, all curves
are almost congruent up to a load of approx. 350 kN. While the model of Meschke (1989) predicts an early degradation of
the corbel stiffness with an almost ideal plastic yielding after reaching the ultimate load, the model used by Suanno (1995)
results in only a minimal stiffness degradation before a relatively strong decrease after exceeding the maximum load occur.
With the model of Tikhomirov & Stein (1999), no definite ultimate load can be determined. Here, an increase in load results
in a linear increase of the load-bearing capacity. In the same way as in Meschke (1989), Hofstetter & Mang (1995) also show
an ideal-plastic material behavior after reaching the ultimate load. The InfoCAD results are in between the results from the
latter two publications. While the Mazars model also predicts nearly ideal-plastic yielding after reaching the maximum load,
the parameters chosen when using the De Vree model imply a slight degradation of the corbel stiffness. To achieve ideal-
plastic material behavior, the parameter A (De Vree) or At,c (Mazars) must be set to zero.

Unreinforced Concrete Structures
The validation of the implemented elasto-plastic damage model (plasticity-damage), which is available in InfoCAD for solid
elements of the material type Frei, is done, among others, with the help of the experimental results of Petersson (1981) and
Winkler (2001). Their experimental results serve as a reference and are often used in the development of nonlinear material
models to verify  numerically determined solutions, such as  load-displacement curves.  Both structures discussed below are
unreinforced.  First,  Petersson's  3-point  bending  beam  (with  a  notch  in  the  center  of  the  span)  is  analyzed.  Due  to  the
geometry  and  boundary  conditions,  the  'crack'  that  occurs  with  increasing  load  is  in  Mode I  only  (opening  of  the  crack
edges perpendicular to the crack plane). If additional sliding of the 'crack edges' (Mode II) is observed, the 'crack' is in the
so-called mixed mode. This type of crack loading occurs with Winkler's L-shaped slab.

3-point bending test according to Petersson

The dimensions of the single-span beam with a notch in the center investigated by Petersson (1981) in his dissertation, as
well as its boundary conditions and discretization with solid elements (VQ83) are shown in Figure 1. The width of the notch
(2 cm) corresponds to the smallest mesh width below the load application (Rots et al., 1985).

Figure 1: Geometry, boundary conditions and discretization (424 elements)

The point A drawn in the figure below is used to evaluate the inelastic and plastic strains and the damage over the entire
load path. The load on the statically determinate supported 3-point bending beam was applied in a displacement-controlled
manner.

Parameters  Material    Arc length method 

 E-Modulus [MPa]  30000  Error threshold [%]  0.001 

 Poisson’s ratio [-] 0.2  Number of iterations  200 

 Compressive strength fc [MPa] 43  Initial arc length  0.01 

 Tensile strength ft [MPa] 3.33  Upward limited  yes 

Table 1: Parameters (material and arc length method)

The arc length method was used as the calculation method. Together with the material parameters used, the selected error
tolerance,  number  of  iterations  and  initial  arc  length  are  shown  in  Table 1.  In  order  to  show  differences  between  the
implemented nonlinear solid models (here: combined model according to Lubliner and Lee & Fenves as well as pure damage
according  to  de Vree),  the  influence  of  the  de Vree  model  parameters  on  the  numerically  predicted  ultimate  load  and
softening  is  analyzed  in  addition to  the  validation  of  the  elasto-plastic  damage  model  (in  InfoCAD:  plasticity-damage).  A
total of four different simulations are performed for this purpose. All model parameters used are listed in Table 2. While in
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the  case  of  the  combined  model  (N1),  the  fracture  energies  measured  by  means  of  concrete  specimens  during  the  test
(concrete age: 28 days / average values: Gt = 124 N/m, Gc = 23 kN/m) are directly included in the numerical calculation and

determine both the ultimate load and the softening process, in the case of the De Vree model (currently no consideration of
fracture energy regularization), an adjustment of the stress-strain relationship must be made via parameters A and B.

N  Material model A B Gt Gc ec1

1  Plasticity-damage  x  x  124 N/m  23 kN/m  2.2 

2  Damage / De Vree  0.98  10 x x x

3  Damage / De Vree  0.98  100 x x x

4  Damage / De Vree  0.98  1000 x x x

5  Damage / De Vree  0.98  230 x x x

Table 2: Parameters material models

The  difference  between  the  two  models  or  in  their  handling  can  be  seen  in  the  load-displacement  curves  (InfoCAD)
illustrated in Figures 2 and 3.
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Figure 3: Comparison of experimentally and numerically determined load-displacement curves. 
(InfoCAD: De Vree)

Using the elasto-plastic damage model (plasticity-damage) and the fracture energies (Gt, Gc) known from experiments, very

good  agreement  is  obtained  with  the  load-displacement  curves  recorded  during  the  experiment.  An  adjustment  of  the
model parameters is  not necessary.  Both, the ultimate load and the softening material  behavior are numerically  predicted
with sufficient accuracy. This is also shown by a comparison with other numerical results (De Borst, 1986; Rots et al. 1985).
The situation is different with the results shown in Figure 3. It is obvious that the De Vree model requires a parameter study
for a realistic representation of a particular material  behavior.  The ultimate load and the degree of stiffness  reduction are
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strongly coupled. Modeling a large increase in damage results in a reduced ultimate load, while a slow increase in damage
results in an increased ultimate load (controlled by parameter B).

Figure 4: Propagation of damage with increasing load (plasticity-damage)

For further analysis, but also to show possible result representations in InfoCAD, further numerical results of the combined
model are evaluated here in addition to the load-displacement curve (see in Figure 2). These include the damage occurring

with increasing load (Figure 4) as well as the inelastic (ein) and plastic (epl) strains (Figure 5).

Figure 5: Propagation of inelastic (In.x) and plastic (tension: Pl.t) strains with increasing load (plasticity-damage).

In addition, the relationship between the latter quantities (for uniaxial tension: et
pl / et

in = 0,1, see combined model, Figure 

17), can be directly derived from the results of the Petersson experiment.
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Figure 6: Propagation of damage and inelastic and plastic strains at point A.
(see figure 1, plasticity-damage)

Either by looking at the contour plots, which also vividly illustrate the different degradation state within the entire structure,
including  when  the  ultimate  load  is  reached  ('crack  initiation  and  crack  propagation'  above  the  notch),  or  by  looking  at
Figure 6, which illustrates the propagation of both the damage and the inelastic and plastic strains over the entire loading
path (the evaluation is done at point A, see Figure 1).
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L-slab according to Winkler

In  order  to  confirm  the  very  good  reproduction  capability  of  the  elasto-plastic  damage  model  (plasticity-damage)  with
respect to stiffness degradation and damage propagation, as established in the analysis of the single-span beam (Petersson, 
1981),  the  numerical  results  are  verified  on  the  basis  of  a  second  series  of  tests.  This  is  an  unreinforced  L-shaped  slab
investigated by Winkler (2001) in his dissertation.

Figure 7: Geometry, boundary conditions and discretizations

The geometric dimensions and boundary conditions are shown in Figure 7. Furthermore, two discretizations with different
mesh  widths  are  shown.  Numerical  analyses  should  provide  information  on  the  influence  of  the  element  size  on  the
softening behavior. In order to minimize the stresses and thus any damage in the support area, the L-slab is supported in a
statically  determinate  manner.  In  addition,  in  analogy  to  the  3-point  bending  beam,  the  load  is  also  applied  here  in  a
displacement-controlled manner.  As a result  of  the arc  length method,  which is  again  used  as  a  calculation method,  the
representation of load-displacement curves as well as the increasing damage at selected nodes of the discretized structure
over the course of the load is directly possible. The same applies to the inelastic and plastic strains.

Parameters  Material    Arc length method 

 E-Modulus [MPa]  25850  Error threshold [%]  0.01 

 Poisson’s ratio [-] 0.18  Number of iterations  50 

 Compressive strength fc [MPa] 33  Initial arc length  0.02 

 Tensile strength ft [MPa] 2.7  Upward limited  yes 

Table 3: Parameters (material and arc length method)

However,  in  contrast  to  the  evaluation  of  the  results  of  the  single-span  beam,  in  the  following  only  load-displacement
curves are verified or compared with the curves recorded during the experiment. However, two contour plots are included,
which  clearly  show  the  relationship  between  deformation  and  damage  ('crack  progression').  Table 3  contains  relevant
material parameters and all necessary parameters for controlling the calculation with the arc length method. On the other
hand, two further material parameters, which represent input parameters of the combined model, namely the two fracture
energies  (tension:  Gt,  compression:  Gc),  are  shown in  Table 4.  The  default  values  defined  in  InfoCAD  (Gt = 100 N/m,  Gc

 = 15 kN/m, ec1 = 2.2 p.m.) were not changed for the FE simulations.

There  is  also  a  comparison  of  combined  model  (plasticity-damage)  and  pure  damage  model  (De Vree)  in  this  validation
example. The chosen parameters (A and B) for generating the uniaxial stress-strain relation according to Peerlings (1999) can
also be taken from Table 4.

N  Material model A B Gt Gc ec1

1  Damage / De Vree  0.98  140  x  x  x 

2  Plasticity - damage  x  x  100 N/m  15 kN/m  2.2 

Table 4: Parameters material models

Again,  using  the  elasto-plastic  damage  model  shows  a  very  good  correlation  between  numerically  and  experimentally
determined  load-displacement  curves,  see  Figure 8.  The  ultimate  load  is  predicted  with  sufficient  accuracy  for  both
discretizations.  However,  due  to  the  smaller  characteristic  length  in  the  case  of  the  fine  mesh  (9752 elements)  and  the
associated increased element-specific fracture energy, a minimally lower stiffness reduction in the post-failure region can be
observed.
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Figure 8: Comparison of experimentally (Winkler, 2001) and numerically (InfoCAD) determined load-displacement
curves

For  both  FE  meshes,  the  analysis  was  also  performed  with  constant  stiffness  (linear  stiffness  method).  As  expected,  the
curves  are  above  those  with  variable  stiffness.  However,  especially  for  complex  structural  analyses  and  stress  conditions,
constant  stiffness  is  recommended  for  the  calculation.  Figure 9  shows  the  vertical  displacement  (left)  together  with  the
damage distribution (right) for the last load step (w = 0,8 mm).

Figure 9: Vertical displacement (left) and damage propagation (right)

The resulting,  almost  stress-free,  'crack'  propagates  in  the  same way  as  in  the  experiment  (Winkler, 2001)  in  a  slight  arc
from the inward corner to the opposite side of the slab. Both contour plots are from the simulation with fine discretization
and variable stiffness.

While the combined model already achieves very good results with the standard model parameters (Table 4), the use of the
De Vree  model  requires  an  adjustment  of  the  parameters  (possibly  several  times)  in  order  to  reproduce  the  real  material
behavior  (see  previous  section).  A  parameter  study  carried  out  in  advance,  but  not  described  in  detail  here,  showed  an
acceptable stress-strain relationship for the parameters shown in Table 4. The ultimate load is slightly underestimated with
the fine FE mesh, but the post-cracking behavior is predicted with sufficient accuracy. Above this load-displacement curve
lies,  as  expected,  the  curve  determined  with  broad  discretization.  In  this  case,  the  calculation  model  delivers  a  too  low
degradation of the material after exceeding the ultimate load. The post-cracking behavior thus deviates from the softening
curve observed in the experiment.
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Figure 10: Comparison of experimentally and numerically (InfoCAD) determined load-displacement curves

The interrelationships between ultimate load and softening process as  well  as  any parameter  studies  to  be carried out to
generate  an  adequate  uniaxial  stress-strain  relationship  have  already  been discussed  in  the  case  of  the  single-span  beam
with notch (Petersson, 1981). Repeated explanations are therefore not provided here and instead reference is made to the
previous section.

Bearing Capacity Failure of Foundation and Embankment Failure
The Mohr-Coulomb plasticity model is available in InfoCAD for determining the load-bearing capacity of soils and predicting
possible failure scenarios such as the formation of slip surfaces. The model can be used both for foundation failure analyses
and for estimating the stability of embankments (Phi-c Reduction).

Bearing Capacity Failure of Foundation

The verification of the numerical results is done here on the basis of the problem considered by Zienkiewicz et al. (1975). In
the  same way  as  in  the  cited  publication,  the  numerical  analysis  is  performed using  both  associative  and  non-associative
flow rule. In InfoCAD, the approach used for the calculation is determined by the appropriate choice of the dilatancy angle

y. In Figure 1, all material parameters (dialog of material properties) are shown together with the dimensions and boundary
conditions of the soil model (half system).

Figure 1: Dimensions (thickness d = 1 m), boundary conditions and material parameters

In order to show the influence of the foundation stiffness on the deformation behavior and the bearing capacity of the soil,
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two cases are investigated, a rigid and a flexible foundation. Numerically, this is implemented by a displacement-controlled
(rigid)  or  load-controlled (flexible)  calculation,  where the superimposed load is  applied  directly  to  the  weightless  soil.  The
settlement underneath the foundation as well as the lateral upward displacement of the soil (bulging) that occurs when the
load is increased can be illustrated using Figure 2.

Figure 2: Deformation of the soil layer - flexible foundation

The mechanism of the bearing capacity failure of foundation (active wedge, radial shear zone, passive wedge) becomes even
clearer using Figure 3 than when considering the deformations. When displaying the equivalent plastic strains, the shape of
the slip surface becomes obvious. In addition to fracture figures, the Mohr-Coulomb  plasticity model available in InfoCAD
can also be used to numerically predict the ultimate load of the soil (maximum soil pressure).

Figure 3: Equivalent plastic strains ev - flexible foundation (maximum values form sliding surface)

The analyses performed with the arc length method (number of iterations: 20, initial arc length: 1 (rigid) bzw. 0.1 (flexible),
Up  limited,  error  threshold: 0.01%,  constant  stiffness)  are  in  very  good  agreement  with  the  reference  solutions  from
Zienkiewicz et al. (1975) and Prandtl (1921), both for associative (Figure 4) and non-associative (Figure 5) plasticity.
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Figure 4: Load-deformation curve (associative flow rule: j = y = 20° )

The influence of the foundation stiffness is negligible here (deviation at the maximum bottom pressure is about 5%).
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Figure 5: Load-deformation curve (non-associative flow rule: j = 20°, y = 0° )
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Embankment Failure

To calculate the safety factor (FoS) or utilization factor (1 / FoS) of an embankment, the rule according to Fellenius (1927) [

Phi-c Reduction] is used in InfoCAD. The soil parameters (friction angle j and cohesion c) are successively reduced (see Eq. 1
) until the failure of the soil occurs, characterized by the sliding of the sliding body on a sliding surface (slope failure).

CohesionFailure state = Cohesion / FoS

Friction angleFailure state = arctan( tan(Friction angle) / FoS )
(Eq. 1)

On the basis of the problem described below and shown in Figure 6, taken from the publication by Griffiths & Lane (1999),
the  results  calculated  with  InfoCAD  are  verified  on  the  one  hand  and  on  the  other  hand  possible  analysis  settings  and
internal program adjustments made when using the Phi-c Reduction are explained. The embankment failure simulation can
be  performed  with  any  of  the  three  implemented  nonlinear  analysis  methods  and  is  activated  in  the  Nonlinear  System
Analysis settings (Serviceability).

Figure 6: Dimensions (thickness d=1m), boundary conditions and material parameters

The  results  obtained  with  both  available  analysis  methods,  the  Newton  and  arc  length  methods,  are  compared  here.
Whereas with the arc length method (iterations per arc length 200; initial arc length 0.2; limited; tolerance 0.01%; constant
stiffness)  the  dead  weight  is  increased  incrementally  until  the  entire  load  is  applied  (load  factor = 1),  with  the  Newton
method (max. iterations per load step 200; tolerance 0.01%; constant stiffness) the load is applied immediately. In addition,
to show a possible influence of the discretization on the calculation of the factor of safety (FoS), the analysis was performed
with three different FE meshes ( tetrahedron elements). The numerically determined safety factors are included in Table 1.

Number of
elements

Analysis method

Newton Arc length method

1822 1.35 1.325

18922 1.35 1.325

55085 1.35 1.325

Table 1: Influence of discretization and analysis method on the determination of the safety factor

Newton and the arc  length method provide  a  factor  of  safety  of  1.35  and  1.325,  independent  of  the  discretization.  The
values  correspond  very  well  both  with  the  numerical  reference  solution  of  Griffiths & Lane (1999)  [FoS = 1.35  (last
convergent state)] and with the analytical solution of Bishop & Morgenstern (1960) [FoS = 1.38]. In InfoCAD, in addition to
the factor, the reduced soil properties are also logged, see Figure 7. When using the arc length method or the Newton time-
step method, the log also contains the entire history of the Phi-c Reduction (all increments of the interval nesting).

Phi-c Reduction:  Load case    1   (Serviceability)

Factor of Safety (FoS) according to Fellenius  :   1.35

Reduced parameters (Failure)
Nr.     Friction angle [°]   Dilatancy angle [°]   Cohesion [MPa]  
-----------------------------------------------------------------
   1          15.1                  0.0               0.0074      

Figure 7: Log entry

In  the  same  way  as  in  the  foundation  failure  analysis,  the  sliding  surface  occurring  within  the  soil  can  also  be  clearly
recognized  here  using  the  equivalent  plastic  strains  (Figure 8).  It  should  be  noted  that  all  Phi-c  Reduction  results
(deformations, stresses, strains, etc.) presented in InfoCAD show the condition when the embankment is still stable and not
the condition when the embankment has already failed.
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Figure 8: Equivalent plastic strains ev (maximum values form sliding surface)

It should also be noted that the load-time curve is adjusted internally in the program when the Newton time-step method is
used for embankment failure calculation. The internal adjustment affects all  loads with assigned load-time curves.  Here,  a
load-time curve entered by the user as desired is converted into a linear load-time curve (Figure 9).  The duration at which
the maximum load factor (f(t)=1) is reached is to be defined by the user in the analysis settings.

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

f(t) [-]

t [s]    

0

1

0 Duration

f(t) [-]

t [s]

Figure 9: Load-time curve when using the nonlinear analysis method Newton time steps.
Left: Random load-time curve (entered in InfoCAD), right: load-time curve after automatic adjustment.

Snap Through Problem of a Cylindrical Shell
The cylindrical shell subjected to a central point load as shown below was first numerically investigated by Sabir and Lock in
1972. Their results are used to verify the arc length method implemented in InfoCAD. For the comparison calculation, the
structure with jointed supports on two sides was discretized with 20x20 shell elements.

 

Parameters:

Pc = 1 kN

R =  2540 mm

Q = 0,2 rad

 L =  508 mm

 t =  6.35 mm

 Es
=  3102.64 MN/m²

 v =  0.3
Discretization with supports, load and parameters

The calculation was based on the third order theory assuming linear-elastic  material  behavior (Error threshold 0.01 %).  In
order to illustrate the influence of the arc length on the numerical result as well as to show two possibilities to control the
end of the calculation, three FE simulations with different specifications for the non-linear system analysis were performed.
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Settings: Case 1 Case 2 Case 3

Control: Load factor = 1 Load factor = 1 1. Bifurcation point

Initial arc length: 0.1 auto 0.1

Up limited: yes no yes

Iterations per arc length: 3 3 3

As illustrated in the figure below, all load-displacement curves calculated with the arc length method are in good agreement
with  the  results  of  Sabir  and  Lock.  (identical  result  curve  for  case 1  and  3  until  first  branch  point  is  reached,  load  factor
= 0.53) In addition, it becomes clear that a sufficiently small arc length is required for a detailed resolution of the complete
equilibrium path.
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